en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李燕(1999-),女,硕士研究生,研究方向为废塑料催化裂化。E-mail: liyan@foxmail.com。

通信作者:

冯翔(1988-),男,教授,博士,博士生导师,研究方向为工业催化。E-mail: xiangfeng@upc.edu.cn。

陈德(1962-),男,教授,博士,挪威工程院院士,挪威皇家科学院院士,欧洲科学院院士,研究方向为工业催化。E-mail:de.chen@ntnu.no。

中图分类号:TQ 426

文献标识码:A

文章编号:1673-5005(2025)05-0265-08

DOI:10.3969/j.issn.1673-5005.2025.05.027

参考文献 1
NICHOLLS B T,FORS B P.Closing the loop on thermoset plastic recycling[J].Science,2024,384(6692):156-157.
参考文献 2
VIDAL F,VAN DER MAREL E R,KERR R W F,et al.Designing a circular carbon and plastics economy for a sustainable future[J].Nature,2024,626(7997):45-57.
参考文献 3
JEHANNO C,ALTY J W,ROOSEN M,et al.Critical advances and future opportunities in upcycling commodity polymers[J].Nature,2022,603(7903):803-814.
参考文献 4
SUN J,DONG J,GAO L,et al.Catalytic upcycling of polyolefins[J].Chemical Reviews,2024,124(16):9457-9579.
参考文献 5
TANG K Y,CHAN C Y,CHAI C H T,et al.Thermochemical valorization of waste plastic for production of synthetic fuels,fine chemicals,and carbon nanotubes[J].Acs Sustainable Chemistry & Engineering,2024,12(5):1769-1796.
参考文献 6
XU D,HUANG G,GUO L,et al.Enhancement of catalytic combustion and thermolysis for treating polyethylene plastic waste[J].Advanced Composites and Hybrid Materials,2022,5(1):113-129.
参考文献 7
XU T,LÜ Q,SHENG G,et al.Evolving patterns and drivers of waste plastic trade in key global economies[J].Resources,Conservation and Recycling,2024,206:107606.
参考文献 8
MEYS R,KÄTELHÖN A,BACHMANN M,et al.Achieving net-zero greenhouse gas emission plastics by a circular carbon economy[J].Science,2021,374(6563):71-76.
参考文献 9
AN L,KOU Z,LI R,et al.Research progress in fuel oil production by catalytic pyrolysis technologies of waste plastics[J].Catalysts,2024,14(3):212.
参考文献 10
SHANG J,LI Y,HU Y,et al.Engineering non-noble Ni/WOx-ZrO2 towards boosted fuels production by catalytic upcycling of polyethylene at mild conditions[J].Journal of Catalysis,2024,430:115302.
参考文献 11
QUESADA L,CALERO DE HOCES M,MARTÍN-LARA M A,et al.Performance of different catalysts for the in situ cracking of the oil-waxes obtained by the pyrolysis of polyethylene film waste[J].Sustainability,2020,12(13):5482.
参考文献 12
PREMKUMAR P,SARAVANAN C G,NALLURI P,et al.Production of liquid hydrocarbon fuels through catalytic cracking of high and low-density polyethylene medical wastes using fly ash as a catalyst[J].Process Safety and Environmental Protection,2024,187:459-470.
参考文献 13
RODRÍGUEZ E,GUTIÉRREZ A,PALOS R,et al.Co-cracking of high-density polyethylene(HDPE)and vacuum gasoil(VGO)under refinery conditions[J].Chemical Engineering Journal,2020,382:122602.
参考文献 14
DONG Z,CHEN W,XU K,et al.Understanding the structure-activity relationships in catalytic conversion of polyolefin plastics by zeolite-based catalysts:a critical review[J].ACS Catalysis,2022,12(24):14882-14901.
参考文献 15
PANDA A K,SINGH R K,MISHRA D K.Thermolysis of waste plastics to liquid fuel:a suitable method for plastic waste management and manufacture of value added products:a world prospective [J].Renewable and Sustainable Energy Reviews,2010,14(1):233-248.
参考文献 16
CORMA A,ORCHILLÉS A V.Current views on the mechanism of catalytic cracking[J].Microporous and Mesoporous Materials,2000,35/36:21-30.
参考文献 17
BLAY V,LOUIS B,MIRAVALLES R,et al.Engineering zeolites for catalytic cracking to light olefins[J].ACS Catalysis,2017,7(10):6542-6566.
参考文献 18
BUCHANAN J S,SANTIESTEBAN J G,HAAG W O.Mechanistic considerations in acid-catalyzed cracking of olefins[J].Journal of Catalysis,1996,158(1):279-287.
参考文献 19
YAO L,ZHU J,LI S,et al.Analysis of liquid products and mechanism of thermal/catalytic pyrolysis of HDPE[J].Journal of Thermal Analysis and Calorimetry,2022,147(24):14257-14266.
参考文献 20
SHAH J,RASUL JAN M,HUSSAIN Z.Catalytic pyrolysis of low-density polyethylene with lead sulfide into fuel oil[J].Polymer Degradation and Stability,2005,87(2):329-333.
参考文献 21
张强,马晓月,刘璐,等.简化晶种导向液法合成低硅铝比SAPO-34分子筛[J].中国石油大学学报(自然科学版),2019,43(1):154-161.ZHANG Qiang,MA Xiaoyue,LIU LU,et al.SAPO-34 molecular sieves with low ratio of Si/Al synthesized by simplified seed induced agent method[J].Journal of China University of Petroleum(Edition of Natural Science),2019,43(1):154-161.
参考文献 22
JIAO Y,FORSTER L,XU S,et al.Creation of Al-enriched mesoporous ZSM-5 nanoboxes with high catalytic activity:converting tetrahedral extra-framework Al into framework sites by post treatment[J].Angewandte Chemie International Edition,2020,59(44):19478-19486.
参考文献 23
王有和,王晓东,孙洪满,等.单一模板剂两段变温法合成球状多级孔ZSM-5分子筛[J].中国石油大学学报(自然科学版),2018,42(2):153-159.WANG Youhe,WANG Xiaodong,SUN Hongman,et al.Two-step hydrothermal synthesis of hierarchical ZSM-5 zeolite with spherical structure using single template[J].Journal of China University of Petroleum(Edition of Natural Science),2018,42(2):153-159.
参考文献 24
DORADO C,MULLEN C A,BOATENG A A.Origin of carbon in aromatic and olefin products derived from HZSM-5 catalyzed co-pyrolysis of cellulose and plastics via isotopic labeling[J].Applied Catalysis B:Environmental,2015,162:338-345.
参考文献 25
YANG X,GAO B,LI W,et al.Mechanism investigation of acid-tailored USY zeolites via ion exchange in polypropylene cracking[J].Chem Catalysis,2024,4(3):100947.
参考文献 26
FELICZAK-GUZIK A.Hierarchical zeolites:synthesis and catalytic properties[J].Microporous and Mesoporous Materials,2018,259:33-45.
参考文献 27
SULLIVAN K P,WERNER A Z,RAMIREZ K J,et al.Mixed plastics waste valorization through tandem chemical oxidation and biological funneling[J].Science,2022,378(6616):207-211.
参考文献 28
ZHANG Z,CHEN H,LI G,et al.Highly selective upgrading of polyethylene into light aromatics via a low-temperature melting-catalysis strategy[J].ACS Catalysis,2024,14(4):2552-2561.
参考文献 29
REIPRICH B,TARACH K A,PYRA K,et al.High-silica layer-like zeolites Y from seeding-free synthesis and their catalytic performance in low-density polyethylene cracking[J].ACS Applied Materials & Interfaces,2022,14(5):6667-6679.
参考文献 30
DUAN J,CHEN W,WANG C,et al.Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion[J].Journal of the American Chemical Society,2022,144(31):14269-14277.
目录contents

    摘要

    为明确分子筛微观孔道结构与聚乙烯反应性能之间的构效关系,对4种具有不同孔道结构(规则微孔孔道、笼状结构)的分子筛在聚乙烯催化裂解反应中的性能差异进行探索。结果表明:对于小孔分子筛SAPO-34,初步热裂解产生的长链烃较难进入分子筛孔道发生催化裂解,产物以长链烷烃/烯烃为主;热裂解中间体更易在中孔ZSM-5分子筛孔道内发生催化裂解生成低碳烯烃;大孔分子筛Beta和USY较大孔道为低碳烯烃的二次反应(Diels-Alder反应、环化和芳构化等)提供了一定空间,最终产物中含有较多芳烃;与Beta分子筛相比,USY独特的笼结构一定程度上限制了反应中间体与部分活性位点的接触和进一步反应,降低了芳烃和低碳烯烃的收率。

    Abstract

    In order to clarify the structure-activity relationship between the microscopic pore structure of zeolites and the reaction performance of polyethylene, the performance of four zeolites with different pore structures (regular microporous channels and cage structures) in the catalytic cracking reaction of polyethylene were explored. It is found that for SAPO-34, the long chain hydrocarbons produced by the initial thermal cracking are difficult to enter the pores of the zeolite for catalytic cracking, and the products are mainly long chain alkanes/olefins. Thermal cracking intermediates are more likely to be catalytically cracked into light olefins in the pores of ZSM-5 zeolites. The large pores of Beta and USY zeolites provide a certain space for the secondary reactions of low carbon olefins (such as Diels-Alder reaction, cyclization and aromatization), and the final products contain more aromatic hydrocarbons. Compared with Beta zeolite, the unique cage structure of USY limits the contact and further reaction of the reaction intermediates with some active sites to a certain extent, and reduces the yield of aromatics and light olefins.

  • 聚乙烯(PE)是全球产量最大的塑料之一,广泛应用于包装、建筑、电子等领域[1-4]。聚乙烯应用广泛却难降解,废弃物激增成污染,回收技术因而受关注[5]。目前处理聚乙烯废塑料的主要方法包括填埋、焚烧和化学回收[6-10]。催化裂解反应能够将聚乙烯废塑料转化为高附加值化学品(如燃料油和轻质烯烃),其反应条件可控和产物分布优良,受到广泛关注[11-13]。该反应中催化剂的加入降低了C—C键断裂的活化能,加快了反应速率,从而降低了反应所需的时间和温度,同时提高了气、液产物的选择性[14-15]。聚乙烯催化裂解主要遵循碳正离子机制,涉及质子化、异构化、重排、β断裂以及二次反应(如环化、芳构化)等复杂反应路径,导致单一产品选择性较低[16-18]。近年来,研究者们开发了多种催化剂,以期通过调控反应路径实现单一产品的高选择性[19]。其中分子筛由于具有骨架上丰富的活性位点及独特的孔道空间限制,在聚乙烯催化裂解反应中展现出良好的择形性,有利于生成低碳烯烃、芳烃等物质[20]。聚乙烯催化裂解反应中常使用的分子筛催化剂包括SAPO-34、ZSM-5、Beta、USY 等,其中SAPO-34分子筛的晶体结构为CHA型,具有八元环构成的椭圆形笼状结构,其八元环孔道的直径为0.38 nm[21]。ZSM-5分子筛的晶体结构为MFI型,基本结构单元是由8个五元环组成的。ZSM-5分子筛具有两种十元环孔道,包括十元环直孔道(0.53 nm×0.56 nm)和十元环正弦孔道(0.51 nm×0.55 nm),其孔径约为0.55 nm[22-23]。Beta分子筛的晶体结构为*BEA型,具有包含四元环、五元环、六元环和十二元环的三维网络结构,是具有三维十二元环孔道结构的分子筛,孔径较大,其孔径约为0.66 nm[24]。USY分子筛的晶体结构为FAU型,同样属于十二元环的分子筛,除了具有大的孔径外,还拥有特定的直径为1.24 nm的笼状结构,其孔道直径约为0.74 nm[25]。不同拓扑结构类型的分子筛,其孔道结构不同,使其在聚乙烯催化裂解反应中展现出各异的反应活性及产物选择性[1524-27]。Zhang等[28]对比了SAPO-34分子筛和ZSM-5分子筛在温度为280℃下的裂解LDPE性能。其中小孔的SAPO-34分子筛表现出LDPE的低转化活性,仅产生质量分数为10%的油,主要由烷烃和烯烃组成,而ZSM-5分子筛的产生的芳烃最多。Reiprich[29]等通过采用有机硅烷辅助的低温水热合成法制备了层状FAU型Y分子筛。层状的LY-0.225-H催化剂在生成更高附加值的C3~C4气体和C5~C6液体馏分方面表现突出。Duan等[30]在280℃的条件下,将聚乙烯与纳米片状ZSM-5分子筛进行催化反应,成功制备出轻质烃类产物(C1~C7),其总产率高达74.6%。笔者利用4种不同孔道结构的分子筛催化剂(SAPO-34、ZSM-5、Beta和USY),其孔道形状(规则微孔孔道和笼状结构)和孔道(3.8~7.4 Å)存在较大差异,采用X-射线衍射、N2吸附/脱附、氨气程序升温脱附和扫描电子显微镜对分子筛的物理化学性质进行表征测试。利用固定床装置探究4种分子筛在聚乙烯催化裂解反应中的性能,揭示分子筛孔道结构对聚乙烯催化裂解反应活性的影响机制。

  • 1 试验

  • 1.1 试验材料

  • 低密度聚乙烯(粒径为0.150 mm),中国石化茂名石化公司,置于80℃干燥箱中干燥24 h处理后备用; SAPO-34分子筛、ZSM-5分子筛、Beta分子筛和USY分子筛,其SiO2与Al2O3的物质的量比分别为0.5、30、25、5.5,南开大学催化剂厂,使用前对催化剂进行造粒处理,粒径为0.425~0.850 mm。

  • 1.2 分析表征方法

  • 采用荷兰 PANalytical 公司生产的 X’Pert PRO MPD 型粉末衍射仪进行催化剂样品晶相、物相结构的测定,采用 Cu/Kα 辐射源(λ=0.154 06 nm),管电压为 40 kV,管电流为 40 mA,扫描速度为 2 °/min,扫描范围为4°~40°。采用使用JSM-7900F 型扫描电子显微镜(SEM)进行催化剂样品形貌的采集。采用美国 Micromeritics 公司生产的 ASAP-2020 氮气物理吸脱附仪对催化剂样品的比表面积和孔容等参数进行测定,以高纯氮气为吸附质,液氮为冷阱(-196℃)。采用美国 Micromeritics 公司生产的 AutoChem Ⅱ 2920 型全自动程序升温化学吸附仪对催化剂样品的酸量进行测定,NH3 吸附温度为 80℃,采用 TCD 检测器。

  • 2 LDPE 催化裂解反应

  • 2.1 反应装置及流程

  • 如图1所示,LDPE 催化裂解反应是在间歇式小型固定床反应评价装置上进行的,该装置由固体进料系统、反应系统、加热控温和流量控制系统、产物收集系统以及产物分析系统组成。催化剂的反应性能评价是在常压下进行的,反应开始前,先称取一定量的 LDPE 倒入进料漏斗中,再分别称取一定量的瓷球(作为热载体)和催化剂,分别置于反应器(310S 不锈钢管,内径 20 mm,长 850 mm)的中部和下部,在氮气气氛下,由管式电阻炉加热至设定温度,由测温热电偶控温,并维持 30 min,以除去催化剂表面吸附的水等物理杂质。升温过程中,将进料段的水冷循环打开,使进料段的温度低于 LDPE 的软化点温度,避免进料过程中塑料受热软化变粘,堵塞进料管线,影响反应。反应开始时,先往进料漏斗中充装 0.3 MPa 氮气(N2),打开进料球阀,LDPE被高速气流瞬间打进反应器内,与高温热载体接触,迅速发生热裂解反应,同时有高纯氮气作为载气,将 LDPE 的热裂解产物带到催化剂床层,进一步发生催化改质反应,最终的反应产物进入产物收集系统。反应结束后,液体产物经放置在由制冷机循环冷却的冷阱中的液收瓶收集,气体产物经排水集气装置定量后收集。

  • 图1 间歇式小型固定床反应评价装置

  • Fig.1 Batch miniature fixed-bed reaction evaluation device

  • 2.2 产物分析方法和评价指标

  • LDPE催化裂解产生的气相产物,采用美国Agilent公司生产的7890A-GC型气相色谱仪进行分析。其中通道1采用Porapack Q色谱柱和5A型分子筛色谱柱对气相产物进行分离,并使用热导池、检测器(TCD)进行氢气(H2)含量的测定;通道2采用Porapack Q色谱柱和5A型分子筛色谱柱分离气相产物,同样地,使用TCD检测器进行二氧化碳(CO2)、一氧化碳(CO)、氮气(N2)和氧气(O2)含量的测定;通道3采用HP-5型 Al2O3毛细管柱(30 m×0.32 mm×0.25 μm)对气相产物进行分离,并使用氢火焰离子化检测器(FID)进行烃类含量的测定。

  • LDPE催化裂解产生的液相产物由美国Agilent公司生产的07890A-GC 型气相色谱仪(FID,HP-PONA 型二甲基硅氧烷毛细管柱,50 m×0.20 mm×0.50 μm)进行分析,测定时,柱箱温度由 35℃开始,保持 15 min,再以 2℃/min 的速率升温至 180℃,保持 10 min。将气相产物的GC谱图中某单组分的相对峰面积占比乘以收集到的气体质量可以得到该组分的质量收率。

  • 将液相产物的GC谱图中某个温度范围内的相对面积百分比乘以收集到的液体质量可以得到液相产物中某一段馏分的质量收率。将液相产物中 C5~C12馏分的GC谱图中某单组分的相对峰面积占比乘以C5~C12馏分质量可以得到C5~C12范围内的某个单体烃的质量收率。

  • 3 结果分析

  • 3.1 催化剂表征

  • 4 种分子筛的形貌结构表征见图2。由图2(b)看出,SAPO-34分子筛在2θ=9.5°、15.9°、20.5°、26°和31°处呈现特征峰,表明其结晶度高且为纯相[21]

  • ZSM-5分子筛在2θ=7°~10°和22.5°~25.0°处的特征峰反映了其典型的MFI结构和良好结晶度[22]。Beta分子筛在2θ=7°~8°和22°~23°处的特征峰确认了其结晶度和纯相结构[24]。USY分子筛在2θ=10°~15°和20°~30°处的多个特征峰表明其骨架结构稳定[25]。这些特征峰可用于鉴定分子筛的晶体结构和纯度。样品SAPO-34、ZSM-5、Beta和USY分别具有典型的CHA、MFI、*BEA和FAU型拓扑结构的特征峰,且结晶度良好。

  • 为排除分子筛酸性质对孔道结构的影响,选取SiO2与Al2O3的物质的量比分别为0.5、30、25和5.5的4种分子筛进行反应,并对其酸量和酸强度进行表征测试。由图2(c)看出,4种分子筛的NH3-TPD 曲线均在 150和 350℃附近存在2个脱附峰,分别归属于NH3分子在分子筛弱酸位和强酸位上的脱附,4种分子筛相近的低温和高温脱附峰位置说明其具有相当的弱酸酸强度和强酸酸强度。其酸量计算结果见表1。可以看出,4种分子筛的总酸量相近,均为1.60~1.70 mmol/g。

  • 图2 四种分子筛的形貌结构表征

  • Fig.2 Characterization of morphological structures of four types of zeolites

  • 表1 分子筛样品的孔结构和酸性质参数

  • Table1 Pore structureand acidic property parameters of zeolites samples

  • 注:SBET为总比表面积,由BET方法计算得到;Smicro为微孔比表面积;Sext为外比表面积;Vmicro为微孔体积;Vmeso为介孔体积,由t-plot方法计算获得。

  • 由表1结果可以排除分子筛酸性质差异对催化裂解反应性能的影响。为准确分析4种分子筛的孔性质,对4种分子筛进行N2吸附/脱附和扫描电子显微镜表征。由图2(d)看出,ZSM-5分子筛表现出典型的I型等温线,表明其在低相对压力下即展现出较大的吸附量,且没有明显的回滞环,这可能与ZSM-5分子筛的微孔结构有关,其结构可能更有利于氮气的吸附而不利于其解吸。相比之下,SAPO-34、Beta和USY分子筛表现出典型的IV型等温线,这3种分子筛皆在高相对压力(高于0.9)的时候出现了回滞环,推测是因为晶粒堆积导致的少量介孔结构的出现。Beta的微孔表面积为365 m2/g,这是由于 Beta聚集体中的小颗粒造成的。由4种分子筛的孔性质(表1)看出,其微孔体积和微孔表面积分别为0.14~0.26 cm3/g和261~497 m2/g,表明其良好的结晶度,与XRD结果一致。

  • 分子筛样品的SEM 图像见图3(a)~(d)。可以看出,SAPO-34样品具有典型的类正方体形态且表面光滑平整,晶体粒径为4~6 μm(图3(a))。ZSM-5分子筛展现出典型的棺材状形态,晶体粒径为 1 μm(图3(b))。图3(c)为Beta分子筛的SEM图,是由小颗粒组成的聚集体,晶体粒径为100~200 nm。而USY呈现一种八面体结构,晶体粒径约为 200~500 nm(图3(d))。

  • 3.2 催化剂性能评价

  • 在固定床反应器上对4种分子筛催化剂的聚乙烯催化裂解性能进行测试。为保证LDPE完全转化,将反应温度控制在550℃,评价结果见图4。可以看出,4种分子筛在550℃下催化裂解聚乙烯的性能差异较大。由图4(a)可知,ZSM-5和Beta分子筛在聚乙烯催化裂解反应中展现出较高的气体选择性,表明其在催化裂解过程β断裂程度更深,而SAPO-34催化裂解过程中产生的液相产物较多,可能是由于其孔道较小,仅为0.38 nm,导致初步热裂解产生的长链烃较难进入分子筛孔道发生催化裂解反应,产物以长链烷烃和长链烯烃为主(58.06%)。相比之下,USY分子筛的气相和液相产物收率适中,生成的焦炭较多。

  • 图3 分子筛样品的扫描电子显微镜图像

  • Fig.3 SEM images of zeolites

  • SAPO-34和USY分子筛都具有笼状结构,其中SAPO-34的孔道粒径(0.38 nm)小于USY的孔道粒径(0.74 nm)。对具有相似孔道结构和不同孔道粒径分子筛催化裂解性能进行进一步探索,由图4(a)可知,孔道更小的SAPO-34的裂解活性较差,结合图5(a)碳数分布结果来看,初步热裂解产生的长链烃较难进入分子筛孔道发生催化裂解反应,碳数分布范围较广,因此产物主要集中在C5~C12。而USY分子筛的孔道结构较大,有利于长链烯烃/烷烃的扩散,相较于SAPO-34来说,USY的催化裂解程度更深,因此产生了较多的气相产物。从碳数分布结果来看,USY的产物主要集中在C1~C9。ZSM-5和Beta的气液产物分布(图4(a))同样验证了这一说法。具体的产物分布如图4(b)所示,ZSM-5分子筛对应的低碳烯烃收率最高,4种分子筛的低碳烯烃选择性分别为ZSM-5(36.45)>Beta(29.20%)>SAPO-34(25.40%)>USY(18.62%)。此外对气相产物组成进行分析,由图4(c)可知,气相产物主要由乙烯、丙烯和丁烯组成,其中丙烯的收率最高。液相产物组成见图4(d),4种分子筛上的聚乙烯催化裂解液相产物主要由芳烃、环烷烃、链烷烃和烯烃组成。对于SAPO-34来说,液相产物组成主要以烯烃为主,而另外3种分子筛对应的液相产物组成主要以芳烃为主。对于中孔ZSM-5分子筛,液相产物中大部分都是芳烃(25.65%),含有少量的链烷烃和环烷烃;对于大孔的Beta和USY分子筛,液相产物中除了芳烃还有少量的烯烃,Beta的液相产物主要以芳烃(28.66%)为主,USY的液相产物除了具有芳烃(28.66%)之外,烯烃也占比较多。在聚烯烃裂解过程中,芳烃的形成是一个典型的二次反应,它经历了多个步骤,包括轻烯烃的低聚化、长链烯烃形成二烯烃、二烯烃形成环烯烃以及环烯烃形成芳烃。芳烃收率越高,表明二次反应程度越高。

  • 图4 分子筛样品的催化裂解性能

  • Fig.4 Catalytic cracking performance of zeolites

  • Beta和USY分子筛都属于具有十二元环的分子筛,但其晶体结构和孔隙特性存在显著差异。Beta分子筛具有*BEA型晶体结构,包含四元、五元、六元和十二元环的三维网络结构,而USY分子筛则具有FAU型晶体结构,其特点是具有直径为1.24 nm的笼状结构。这种独特的笼状结构可能对USY分子筛的催化活性产生影响。由图4(a)看出,Beta分子筛的气体收率高于USY分子筛,这表明USY的笼状结构可能导致部分反应中间体无法有效接触活性位点,从而限制了其催化活性。此外Beta分子筛的芳烃收率较高,这可能意味着在Beta分子筛的孔道中,反应中间体更容易发生二次反应,导致芳烃的生成。USY分子筛的笼状结构带来的曲面效应可能对催化裂解过程有积极作用。这种结构可能促进了中间体在孔隙内的传输和反应,从而提高了产物的选择性。然而与Beta相比,USY分子筛的芳烃收率少于Beta分子筛,这可能是由于其笼状结构在一定程度上限制了大分子中间体接触活性位点,中间体脱附较快,二次反应较少(图5(b))。

  • 综上所述,Beta和USY分子筛在聚乙烯催化裂解中表现出不同的性能,这主要归因于其孔隙结构的差异。Beta分子筛较大的孔径和三维网络结构更有利于大分子中间体的扩散和二次反应的发生,从而生成更多的芳烃。而USY分子筛的独特笼状结构虽然提高了产物选择性,但也可能限制了部分中间体与活性位点的接触,影响了其总体催化活性。

  • 图5 分子筛催化裂解聚乙烯的C1~C12碳数分布和反应

  • Fig.5 Carbon number distribution of C1-C12 hydrocarbons in catalytic cracking of polyethylene over zeolite catalysts and reaction schematics

  • 3.3 催化裂解构效关系

  • 不同拓扑结构分子筛催化裂解聚乙烯的构效关系见图6。LDPE 的热裂解中间产物进入催化剂床层,与催化剂接触,当长链烃类从催化剂表面上获得H+,形成碳正离子,一次裂解反应产物分子足够小时,可以扩散进入分子筛孔道内部进行β断裂,烃分子逐渐减小,产生丙烯、丁烯、乙烯、C5~C12烃等,产物分子之间发生二次反应,有的通过氢转移反应转变成烷烃,有的通过Diels-Alder、环化和脱氢反应转变成芳烃。SAPO-34分子筛因其较小的孔径,可能限制了较大分子的扩散,导致经裂解后的中间体无法进入孔道与活性位点接触就扩散出去,从而促进了较多液相烯烃产物的生成。ZSM-5分子筛的孔径略小于Beta分子筛,这可能影响了较大分子中间体的扩散和反应效率,减少了二次反应的发生,从而生成了更多的低碳烯烃。相比之下,Beta分子筛由于其较大的孔径和三维网络结构,可能更有利于大分子中间体的扩散和反应,使得裂解中间体在孔道内发生二次反应,生成更多的芳烃。USY分子筛因其独特的笼状结构,在聚乙烯催化裂解反应中展现出特殊的性能。这种结构有利于反应中间体的扩散,同时由于其曲面效应,会限制中间产物与反应活性位点的接触,从而影响二次反应的发生。USY分子筛的笼状结构可能促进了中间体在孔隙内的传输和反应,提高了产物的选择性。然而其笼状结构在一定程度上限制了大分子中间体接触活性位点,导致中间体脱附较快,二次反应较少。因此在设计聚乙烯催化裂解催化剂时,需要综合考虑分子筛的孔道结构和笼状结构对反应性能的影响。

  • 图6 不同拓扑结构分子筛催化裂解聚乙烯的构效关系

  • Fig.6 Structure-performance relationship of zeolites with different topological structures in the catalytic cracking of polyethylene

  • 4 结论

  • (1)对于具有较小孔(3.8 Å)的SAPO-34分子筛,初步热裂解产生的长链烃较难进入分子筛孔道发生催化裂解反应,产物以长链烷烃和长链烯烃为主(58.06%)。

  • (2)ZSM-5分子筛具有中等的孔道结构(5.5 Å),有利于热裂解中间体在孔道内发生催化裂解反应(如质子化、β断裂等)生成较多的低碳烯烃(36.45%)。

  • (3)具备更大孔道的Beta(6.6 Å)和USY分子筛(7.4 Å),其较大的孔道为低碳烯烃的二次反应(如Diels-Alder、环化和芳构化等)提供了一定空间,最终产物中含有较多的芳烃。

  • (4)与Beta分子筛相比,USY独特的笼状结构在一定程度上限制了反应中间体与部分活性位点的接触和进一步反应(如β断裂、芳构化等),降低了芳烃和低碳烯烃的收率。

  • 参考文献

    • [1] NICHOLLS B T,FORS B P.Closing the loop on thermoset plastic recycling[J].Science,2024,384(6692):156-157.

    • [2] VIDAL F,VAN DER MAREL E R,KERR R W F,et al.Designing a circular carbon and plastics economy for a sustainable future[J].Nature,2024,626(7997):45-57.

    • [3] JEHANNO C,ALTY J W,ROOSEN M,et al.Critical advances and future opportunities in upcycling commodity polymers[J].Nature,2022,603(7903):803-814.

    • [4] SUN J,DONG J,GAO L,et al.Catalytic upcycling of polyolefins[J].Chemical Reviews,2024,124(16):9457-9579.

    • [5] TANG K Y,CHAN C Y,CHAI C H T,et al.Thermochemical valorization of waste plastic for production of synthetic fuels,fine chemicals,and carbon nanotubes[J].Acs Sustainable Chemistry & Engineering,2024,12(5):1769-1796.

    • [6] XU D,HUANG G,GUO L,et al.Enhancement of catalytic combustion and thermolysis for treating polyethylene plastic waste[J].Advanced Composites and Hybrid Materials,2022,5(1):113-129.

    • [7] XU T,LÜ Q,SHENG G,et al.Evolving patterns and drivers of waste plastic trade in key global economies[J].Resources,Conservation and Recycling,2024,206:107606.

    • [8] MEYS R,KÄTELHÖN A,BACHMANN M,et al.Achieving net-zero greenhouse gas emission plastics by a circular carbon economy[J].Science,2021,374(6563):71-76.

    • [9] AN L,KOU Z,LI R,et al.Research progress in fuel oil production by catalytic pyrolysis technologies of waste plastics[J].Catalysts,2024,14(3):212.

    • [10] SHANG J,LI Y,HU Y,et al.Engineering non-noble Ni/WOx-ZrO2 towards boosted fuels production by catalytic upcycling of polyethylene at mild conditions[J].Journal of Catalysis,2024,430:115302.

    • [11] QUESADA L,CALERO DE HOCES M,MARTÍN-LARA M A,et al.Performance of different catalysts for the in situ cracking of the oil-waxes obtained by the pyrolysis of polyethylene film waste[J].Sustainability,2020,12(13):5482.

    • [12] PREMKUMAR P,SARAVANAN C G,NALLURI P,et al.Production of liquid hydrocarbon fuels through catalytic cracking of high and low-density polyethylene medical wastes using fly ash as a catalyst[J].Process Safety and Environmental Protection,2024,187:459-470.

    • [13] RODRÍGUEZ E,GUTIÉRREZ A,PALOS R,et al.Co-cracking of high-density polyethylene(HDPE)and vacuum gasoil(VGO)under refinery conditions[J].Chemical Engineering Journal,2020,382:122602.

    • [14] DONG Z,CHEN W,XU K,et al.Understanding the structure-activity relationships in catalytic conversion of polyolefin plastics by zeolite-based catalysts:a critical review[J].ACS Catalysis,2022,12(24):14882-14901.

    • [15] PANDA A K,SINGH R K,MISHRA D K.Thermolysis of waste plastics to liquid fuel:a suitable method for plastic waste management and manufacture of value added products:a world prospective [J].Renewable and Sustainable Energy Reviews,2010,14(1):233-248.

    • [16] CORMA A,ORCHILLÉS A V.Current views on the mechanism of catalytic cracking[J].Microporous and Mesoporous Materials,2000,35/36:21-30.

    • [17] BLAY V,LOUIS B,MIRAVALLES R,et al.Engineering zeolites for catalytic cracking to light olefins[J].ACS Catalysis,2017,7(10):6542-6566.

    • [18] BUCHANAN J S,SANTIESTEBAN J G,HAAG W O.Mechanistic considerations in acid-catalyzed cracking of olefins[J].Journal of Catalysis,1996,158(1):279-287.

    • [19] YAO L,ZHU J,LI S,et al.Analysis of liquid products and mechanism of thermal/catalytic pyrolysis of HDPE[J].Journal of Thermal Analysis and Calorimetry,2022,147(24):14257-14266.

    • [20] SHAH J,RASUL JAN M,HUSSAIN Z.Catalytic pyrolysis of low-density polyethylene with lead sulfide into fuel oil[J].Polymer Degradation and Stability,2005,87(2):329-333.

    • [21] 张强,马晓月,刘璐,等.简化晶种导向液法合成低硅铝比SAPO-34分子筛[J].中国石油大学学报(自然科学版),2019,43(1):154-161.ZHANG Qiang,MA Xiaoyue,LIU LU,et al.SAPO-34 molecular sieves with low ratio of Si/Al synthesized by simplified seed induced agent method[J].Journal of China University of Petroleum(Edition of Natural Science),2019,43(1):154-161.

    • [22] JIAO Y,FORSTER L,XU S,et al.Creation of Al-enriched mesoporous ZSM-5 nanoboxes with high catalytic activity:converting tetrahedral extra-framework Al into framework sites by post treatment[J].Angewandte Chemie International Edition,2020,59(44):19478-19486.

    • [23] 王有和,王晓东,孙洪满,等.单一模板剂两段变温法合成球状多级孔ZSM-5分子筛[J].中国石油大学学报(自然科学版),2018,42(2):153-159.WANG Youhe,WANG Xiaodong,SUN Hongman,et al.Two-step hydrothermal synthesis of hierarchical ZSM-5 zeolite with spherical structure using single template[J].Journal of China University of Petroleum(Edition of Natural Science),2018,42(2):153-159.

    • [24] DORADO C,MULLEN C A,BOATENG A A.Origin of carbon in aromatic and olefin products derived from HZSM-5 catalyzed co-pyrolysis of cellulose and plastics via isotopic labeling[J].Applied Catalysis B:Environmental,2015,162:338-345.

    • [25] YANG X,GAO B,LI W,et al.Mechanism investigation of acid-tailored USY zeolites via ion exchange in polypropylene cracking[J].Chem Catalysis,2024,4(3):100947.

    • [26] FELICZAK-GUZIK A.Hierarchical zeolites:synthesis and catalytic properties[J].Microporous and Mesoporous Materials,2018,259:33-45.

    • [27] SULLIVAN K P,WERNER A Z,RAMIREZ K J,et al.Mixed plastics waste valorization through tandem chemical oxidation and biological funneling[J].Science,2022,378(6616):207-211.

    • [28] ZHANG Z,CHEN H,LI G,et al.Highly selective upgrading of polyethylene into light aromatics via a low-temperature melting-catalysis strategy[J].ACS Catalysis,2024,14(4):2552-2561.

    • [29] REIPRICH B,TARACH K A,PYRA K,et al.High-silica layer-like zeolites Y from seeding-free synthesis and their catalytic performance in low-density polyethylene cracking[J].ACS Applied Materials & Interfaces,2022,14(5):6667-6679.

    • [30] DUAN J,CHEN W,WANG C,et al.Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion[J].Journal of the American Chemical Society,2022,144(31):14269-14277.

  • 参考文献

    • [1] NICHOLLS B T,FORS B P.Closing the loop on thermoset plastic recycling[J].Science,2024,384(6692):156-157.

    • [2] VIDAL F,VAN DER MAREL E R,KERR R W F,et al.Designing a circular carbon and plastics economy for a sustainable future[J].Nature,2024,626(7997):45-57.

    • [3] JEHANNO C,ALTY J W,ROOSEN M,et al.Critical advances and future opportunities in upcycling commodity polymers[J].Nature,2022,603(7903):803-814.

    • [4] SUN J,DONG J,GAO L,et al.Catalytic upcycling of polyolefins[J].Chemical Reviews,2024,124(16):9457-9579.

    • [5] TANG K Y,CHAN C Y,CHAI C H T,et al.Thermochemical valorization of waste plastic for production of synthetic fuels,fine chemicals,and carbon nanotubes[J].Acs Sustainable Chemistry & Engineering,2024,12(5):1769-1796.

    • [6] XU D,HUANG G,GUO L,et al.Enhancement of catalytic combustion and thermolysis for treating polyethylene plastic waste[J].Advanced Composites and Hybrid Materials,2022,5(1):113-129.

    • [7] XU T,LÜ Q,SHENG G,et al.Evolving patterns and drivers of waste plastic trade in key global economies[J].Resources,Conservation and Recycling,2024,206:107606.

    • [8] MEYS R,KÄTELHÖN A,BACHMANN M,et al.Achieving net-zero greenhouse gas emission plastics by a circular carbon economy[J].Science,2021,374(6563):71-76.

    • [9] AN L,KOU Z,LI R,et al.Research progress in fuel oil production by catalytic pyrolysis technologies of waste plastics[J].Catalysts,2024,14(3):212.

    • [10] SHANG J,LI Y,HU Y,et al.Engineering non-noble Ni/WOx-ZrO2 towards boosted fuels production by catalytic upcycling of polyethylene at mild conditions[J].Journal of Catalysis,2024,430:115302.

    • [11] QUESADA L,CALERO DE HOCES M,MARTÍN-LARA M A,et al.Performance of different catalysts for the in situ cracking of the oil-waxes obtained by the pyrolysis of polyethylene film waste[J].Sustainability,2020,12(13):5482.

    • [12] PREMKUMAR P,SARAVANAN C G,NALLURI P,et al.Production of liquid hydrocarbon fuels through catalytic cracking of high and low-density polyethylene medical wastes using fly ash as a catalyst[J].Process Safety and Environmental Protection,2024,187:459-470.

    • [13] RODRÍGUEZ E,GUTIÉRREZ A,PALOS R,et al.Co-cracking of high-density polyethylene(HDPE)and vacuum gasoil(VGO)under refinery conditions[J].Chemical Engineering Journal,2020,382:122602.

    • [14] DONG Z,CHEN W,XU K,et al.Understanding the structure-activity relationships in catalytic conversion of polyolefin plastics by zeolite-based catalysts:a critical review[J].ACS Catalysis,2022,12(24):14882-14901.

    • [15] PANDA A K,SINGH R K,MISHRA D K.Thermolysis of waste plastics to liquid fuel:a suitable method for plastic waste management and manufacture of value added products:a world prospective [J].Renewable and Sustainable Energy Reviews,2010,14(1):233-248.

    • [16] CORMA A,ORCHILLÉS A V.Current views on the mechanism of catalytic cracking[J].Microporous and Mesoporous Materials,2000,35/36:21-30.

    • [17] BLAY V,LOUIS B,MIRAVALLES R,et al.Engineering zeolites for catalytic cracking to light olefins[J].ACS Catalysis,2017,7(10):6542-6566.

    • [18] BUCHANAN J S,SANTIESTEBAN J G,HAAG W O.Mechanistic considerations in acid-catalyzed cracking of olefins[J].Journal of Catalysis,1996,158(1):279-287.

    • [19] YAO L,ZHU J,LI S,et al.Analysis of liquid products and mechanism of thermal/catalytic pyrolysis of HDPE[J].Journal of Thermal Analysis and Calorimetry,2022,147(24):14257-14266.

    • [20] SHAH J,RASUL JAN M,HUSSAIN Z.Catalytic pyrolysis of low-density polyethylene with lead sulfide into fuel oil[J].Polymer Degradation and Stability,2005,87(2):329-333.

    • [21] 张强,马晓月,刘璐,等.简化晶种导向液法合成低硅铝比SAPO-34分子筛[J].中国石油大学学报(自然科学版),2019,43(1):154-161.ZHANG Qiang,MA Xiaoyue,LIU LU,et al.SAPO-34 molecular sieves with low ratio of Si/Al synthesized by simplified seed induced agent method[J].Journal of China University of Petroleum(Edition of Natural Science),2019,43(1):154-161.

    • [22] JIAO Y,FORSTER L,XU S,et al.Creation of Al-enriched mesoporous ZSM-5 nanoboxes with high catalytic activity:converting tetrahedral extra-framework Al into framework sites by post treatment[J].Angewandte Chemie International Edition,2020,59(44):19478-19486.

    • [23] 王有和,王晓东,孙洪满,等.单一模板剂两段变温法合成球状多级孔ZSM-5分子筛[J].中国石油大学学报(自然科学版),2018,42(2):153-159.WANG Youhe,WANG Xiaodong,SUN Hongman,et al.Two-step hydrothermal synthesis of hierarchical ZSM-5 zeolite with spherical structure using single template[J].Journal of China University of Petroleum(Edition of Natural Science),2018,42(2):153-159.

    • [24] DORADO C,MULLEN C A,BOATENG A A.Origin of carbon in aromatic and olefin products derived from HZSM-5 catalyzed co-pyrolysis of cellulose and plastics via isotopic labeling[J].Applied Catalysis B:Environmental,2015,162:338-345.

    • [25] YANG X,GAO B,LI W,et al.Mechanism investigation of acid-tailored USY zeolites via ion exchange in polypropylene cracking[J].Chem Catalysis,2024,4(3):100947.

    • [26] FELICZAK-GUZIK A.Hierarchical zeolites:synthesis and catalytic properties[J].Microporous and Mesoporous Materials,2018,259:33-45.

    • [27] SULLIVAN K P,WERNER A Z,RAMIREZ K J,et al.Mixed plastics waste valorization through tandem chemical oxidation and biological funneling[J].Science,2022,378(6616):207-211.

    • [28] ZHANG Z,CHEN H,LI G,et al.Highly selective upgrading of polyethylene into light aromatics via a low-temperature melting-catalysis strategy[J].ACS Catalysis,2024,14(4):2552-2561.

    • [29] REIPRICH B,TARACH K A,PYRA K,et al.High-silica layer-like zeolites Y from seeding-free synthesis and their catalytic performance in low-density polyethylene cracking[J].ACS Applied Materials & Interfaces,2022,14(5):6667-6679.

    • [30] DUAN J,CHEN W,WANG C,et al.Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion[J].Journal of the American Chemical Society,2022,144(31):14269-14277.