en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赵青山(1987-),男,副教授,博士,研究方向为碳基纳米催化能源材料。E-mail: qszhao@upc.edu.cn。

通信作者:

赵青山(1987-),男,副教授,博士,研究方向为碳基纳米催化能源材料。E-mail: qszhao@upc.edu.cn。

中图分类号:TQ 426

文献标识码:A

文章编号:1673-5005(2025)05-0255-10

DOI:10.3969/j.issn.1673-5005.2025.05.026

参考文献 1
LINDER C,BOYD R,GRECZYNSKI G,et al.Enhanced oxygen-reaction electrocatalysis and corrosion resistance of CoCrFeNi thin films by tuned microstructure and surface oxidation[J].Small Science,2024,4(11):2400296.
参考文献 2
GUO E,HAO L,HUO Y,et al.Simple synthesis of peanut shell-like MoCoFe-HO@CoMo-LDH for efficient alkaline oxygen evolution reaction[J].Journal of Colloid and Interface Science,2024,664:748-755.
参考文献 3
曾小军,金初龙,张祖梁,刘景洲,赵慧琴.2D/2D MXene/TiO2-MoS2异质结构的构建及其高效析氧反应[J/OL].中国石油大学学报(自然科学版).https://link.cnki.net/urlid/37.1441.TE.20250303.1756.002.ZENG Xiaojun,JIN Chulong,ZHANG Zuliang,et al.Construction of 2D/2D MXene/TiO2-MoS2 heterostructures and their efficient oxygen evolution reaction[J].Journal of China University of Petroleum(Edition of Natural Science),20250303.1756.002.
参考文献 4
MURUGAN N,THANGARASU S,SEO S B,et al.N-doped defect-rich porous carbon nanosheets framework from renewable biomass as efficient metal-free bifunctional electrocatalysts for HER and OER application[J].Renewable Energy,2024,222:119801.
参考文献 5
ALOTAIBI N H,SHAH J H,NISA M U,et al.Catalytic enhancement of graphene oxide by trace molybdenum oxide nanoparticles doping:optimized electrocatalyst for green hydrogen production[J].International Journal of Hydrogen Energy,2024,62:488-497.
参考文献 6
XU S,JIAO D,RUAN X,et al.Synergistic modulation of the d-band center in Ni3S2 by selenium and iron for enhanced oxygen evolution reaction(OER)and urea oxidation reaction(UOR)[J].Journal of Colloid and Interface Science,2024,671:46-55.
参考文献 7
GUO M,DENG R,WANG C,et al.Recent progress of advanced manganese oxide-based materials for acidic oxygen evolution reaction:fundamentals,performance optimization,and prospects[J].Journal of Energy Chemistry,2023,78:537-553.
参考文献 8
SUN S,ZHANG C,RAN M,et al.Fe-doped promotes phosphorization and dispersibility of Ni catalysts for efficient and stable HER and OER[J].International Journal of Hydrogen Energy,2024,63:133-141.
参考文献 9
ZHAO Y,YOU J,WANG L,et al.Recent advances in Ni3S2-based electrocatalysts for oxygen evolution reaction[J].International Journal of Hydrogen Energy,2021,46(79):39146-39182.
参考文献 10
JIANG W,LI H,CHEN Y,et al.OER properties of Ni-Co-CeO2/Ni composite electrode prepared by magnetically induced jet electrodeposition[J].International Journal of Hydrogen Energy,2023,48(11):4287-4299.
参考文献 11
NI J,LUAN Y,WANG X,et al.Mapping current high-entropy materials for water electrolysis:from noble metal to transition metal[J].Journal of Materials Chemistry A,2024,12(24):14268-14301.
参考文献 12
WANG H,PEI Y,WANG K,et al.First-row transition metals for catalyzing oxygen redox[J].Small,2023,19(46):2304863.
参考文献 13
LI L,CAO X,HUO J,et al.High valence metals engineering strategies of Fe/Co/Ni-based catalysts for boosted OER electrocatalysis[J].Journal of Energy Chemistry,2023,76:195-213.
参考文献 14
熊靖,孙彦,马亚肖,等.氧化铈纳米棒负载钯-钴双金属催化甲烷氧化[J].中国石油大学学报(自然科学版),2025,49(3):223-231.XIONG Jing,SUN Yan,MA Yaxiao,et al.Methane oxidation catalyzed by Pd-Co bimetallic species supported on CeO2 nanorods[J].Journal of China University of Petroleum(Edition of Natural Science),2025,49(3):223-231.
参考文献 15
GAO H,XU J,ZHANG X,et al.Benchmarking the intrinsic activity of transition metal oxides for the oxygen evolution reaction with advanced nanoelectrodes[J].Angewandte Chemie International Edition,2024,63(23):e202404663.
参考文献 16
MA W,DONG Y,LI J,et al.Recent strategies for improving the catalytic activity of ultrathin transition metal sulfide nanosheets toward the oxygen evolution reaction[J].Materials Today Energy,2024,40:101492.
参考文献 17
ANNE ACEDERA R,THERESSE DUMLAO A,DONN MATIENZO D,et al.Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions[J].Journal of Energy Chemistry,2024,89:646-669.
参考文献 18
AYOM G E,KHAN M D,DE SOUZA F M,et al.Phase transformation in nickel-rich phosphides(Ni2P and Ni12P5)via transition metal(Cu,Mn)substitution enabling high supercapacitance and water splitting[J].Journal of Energy Storage,2024,97:112882.
参考文献 19
LI D,HUANG Y,LI Z,et al.Deep eutectic solvents derived carbon-based efficient electrocatalyst for boosting H2 production coupled with glucose oxidation[J].Chemical Engineering Journal,2022,430:132783.
参考文献 20
SAMAGE A,PRAMODA K,HALAKARNI M,et al.One-step rapid conversion of electroactive CoMnO nanostructures using a deep eutectic solvent as the template,solvent,and source[J].ACS Applied Energy Materials,2023,6(4):2412-2422.
参考文献 21
JIANG W Q,CHEN Y M,BI W T.Synthesis of porous organic framework materials based on deep eutectic solvents and their application in solid-phase extraction[J].Se Pu,2023,41(10):901-910.
参考文献 22
WU J,LIANG Q,YU X,et al.Deep eutectic solvents for boosting electrochemical energy storage and conversion:a review and perspective[J].Advanced Functional Materials,2021,31(22):2011102.
参考文献 23
ABBOTT A P,CAPPER G,DAVIES D L,et al.Novel solvent properties of choline chloride/urea mixtures[J].Chemical Communications,2003(1):70-71.
参考文献 24
CHEN Y,MU T.Revisiting greenness of ionic liquids and deep eutectic solvents[J].Green Chemical Engineering,2021,2(2):174-186.
参考文献 25
ZHANG C,XIN B,CHEN T,et al.Deep eutectic solvent strategy enables an octahedral Ni-Co precursor for creating high-performance NiCo2O4 catalyst toward oxygen evolution reaction[J].Green Energy & Environment,2022,7(6):1217-1227.
参考文献 26
LIU Y,GUO H W,ZENG F Y.Green fabrication of nanostructured Ni(OH)2/Ni/Carbon felt electrodes with water-containing deep eutectic solvent for enhanced water electrolysis performance[J].Journal of Power Sources,2023,570:233043.
参考文献 27
GUAN S,XU B,WU J,et al.High-entropy materials based on deep eutectic solvent for boosting oxygen evolution reaction[J].Fuel,2024,358:130315.
参考文献 28
MAURYA P K,MISHRA A K.In situ grown vertically oriented wrinkled MoSe2 nanosheets over different substrates as bifunctional electrocatalysts for water splitting[J].ACS Applied Energy Materials,2024,7(2):487-498.
参考文献 29
ZHANG G,LI Z,ZENG J,et al.Ferric ions leached from Fe-based catalyst to trigger the dynamic surface reconstruction of nickel foam for high-efficient OER activity[J].Applied Catalysis B:Environmental,2022,319:121921.
参考文献 30
曾小军,张祖梁,金初龙.Ti3C2Tx纳米带/MoCoPx异质结构的构筑及其高效电催化OER性能[J].中国石油大学学报(自然科学版),2023,47(4):190-197.ZENG Xiaojun,ZHANG Zuliang,JIN Chulong.Construction of Ti3C2Tx nanoribbons/MoCoPx heterostructures and high-efficient electrocatalytic OER performance[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(4):190-197.
目录contents

    摘要

    利用丙三醇、尿素和氯化钴构建三元低共熔溶剂(DES)体系,通过低共熔溶剂热法一步制备出三维纳米花状的泡沫镍负载CoCO3-NiOOH催化剂(CoCO3-NiOOH/NF(D))。结果表明:泡沫镍载体与三元DES体系在溶剂热条件下原位发生反应,生成富氧空位缺陷的CoCO3和NiOOH复合物,其三维导电网状结构有效促进界面电子迁移和活性位点的暴露;制备的CoCO3-NiOOH/NF(D)催化剂表现出优异的电催化析氧(OER)性能,在电流密度为20 mA/cm2时过电位仅为295 mV,Tafel斜率为78.1 mV/dec,性能远优于传统水热法合成的CoCO3-NiOOH/NF(W)催化剂(407 mV,112.8 mV/dec);CoCO3-NiOOH/NF(D)催化剂还表现出优异的循环稳定性,在长期稳定性测试60 h后,其电流密度保留率达92%。

    Abstract

    A ternary deep-eutectic solvent (DES) system was constructed using glycerol, urea, and cobalt chloride. And a three-dimensional nanoflower-like nickel foam-supported CoCO3-NiOOH catalyst (CoCO3-NiOOH/NF(D)) was fabricated through one-step deep-eutectic solvothermal method. The results show that the foam nickel support in situ reacts with the ternary DES under solvothermal conditions, resulting in a composite of CoCO3 and NiOOH enriched with oxygen vacancy defects. The three-dimensional conductive network effectively promotes interfacial electron transfer and the exposure of active sites. The prepared CoCO3-NiOOH/NF(D) catalyst exhibits excellent electrocatalytic oxygen evolution (OER) performance. The overpotential is only 295 mV at a current density of 20 mA/cm2 and the Tafel slope is 78.1 mV/dec. The performance is much better than the CoCO3-NiOOH/NF(W) catalyst synthesized by the traditional hydrothermal method ( 407 mV, 112.8 mV/dec). Additionally, the CoCO3-NiOOH/NF(D) catalyst also demonstrates excellent cycling stability, maintaining a current density retention rate of 92% after a long-term stability test of 60 h.

  • 能源结构转型进程中,由化石燃料[1-3]逐渐转向清洁可再生能源[4-5],其中氢能[6]具有独特优势。电解水制氢过程分为阳极的析氧反应(OER)和阴极的析氢反应(HER)[7-9]。电解水反应理论上需要1.23 V的电压,但OER动力学迟缓,需施加额外电压来分解水分子,从而增加了能量的消耗[10]。贵金属催化剂(如IrO2/RuO2等)是有效的OER催化剂,而发展可取代贵金属的低廉、清洁和高活性电解水催化剂至关重要[11-13]。过渡金属(如钴、镍、钼等)资源丰富[14],基于这些金属的氧化物[15]、硫化物[16]、磷化物[17-18]等催化剂具有价格低廉、3d轨道易调节等优势,对OER展现出良好的活性和广泛的应用前景。低共熔溶剂(DES)是由氢键供体和氢键受体经一定比例混合,通过氢键作用形成的具有制备简易、无污染、稳定性好及高溶解性的优点,可用作溶剂、反应物、结构导向剂的新型溶剂[19-22]。常见的氢键受体分子有含卤离子的季胺盐(如氯化胆碱)、季鏻盐等物质;常见的氢键供体分子有多元醇、酰胺、羧酸等物质[23-24]。其中多元醇含有两个及以上的羟基,具有对极性物质强溶解能力、低毒性和低挥发性等特点,可作为氢键供体与其他组分形成稳定的氢键网络。尿素可作为氢键受体与多元醇相互作用,进一步增强溶剂的稳定性和降低其凝固点。DES体系的特点使其成为开发制备高效OER催化剂的有效途径。Zhang等[25]利用氯化胆碱/丙三醇低共熔溶剂介导策略合成了NiCo-NH3复合物,经加热处理后转化为NiCo2O4纳米八面体,在OER反应中表现出良好的电化学活性和稳定性。Liu等[26]以含水氯化胆碱/尿素DES为绿色反应介质,采用一步电沉积法制备出具有异质结构的Ni(OH)2/Ni/碳毡(CF)复合催化剂,DES对水分子的调控诱导Ni沉积,进而促进了Ni(OH)2的形成,增加了催化活性位点,对OER反应表现出优异的催化性能。Guan等[27]以不同的DES(聚乙二醇/硫脲、乙二醇/尿素、乙二醇/柠檬酸)为溶剂和模板,采用溶剂热法制备出FeCuNiMnAl高熵电催化剂,其中以聚乙二醇/硫脲DES为反应体系制备出具有优异形貌及性能的催化剂,并探讨了金属对OER性能的影响,研究表明随着金属元素种类的增加,OER电催化性能也随之提高。载体在催化剂中扮演极其重要的角色,对于催化材料的性能起着关键作用。泡沫镍(NF)资源丰富、导电性好,是用作电催化剂载体的优良选择,因而许多研究者以NF为载体构建高活性的催化剂。Maurya等[28]报道了在NF和碳纸上原位合成MoSe2电催化剂,其中负载在NF的MoSe2电催化剂在碱性介质中表现出更优的OER催化活性。Chen等[29]为了开发一种新型、低成本、高活性的电催化剂,并研究载体对电催化剂的影响,将棒状的Fe2OF4分别负载在NF和碳布上,其中以NF为载体上的催化剂展现出更高的OER催化活性,在10 mA/cm2的电流密度下,所需过电位仅为238 mV,Tafel斜率低至48 mV/dec,优于负载在碳布上的催化剂(过电位为326 mV,Tafel斜率为170 mV/dec)。笔者以丙三醇为氢键供体,以尿素和氯化钴为氢键受体,构建新型三元超分子DES体系,进一步以NF为载体及镍源,采用一锅低共熔溶剂热法原位合成高分散、富氧缺陷的CoCO3和NiOOH复合物,制备三维纳米花状的CoCO3-NiOOH/NF(D)催化剂,并对其微观形貌结构和电催化OER性能进行系统研究。

  • 1 试验

  • 1.1 试验试剂与仪器

  • 试验试剂:丙三醇、六水合氯化钴,阿拉丁集团化学试剂有限公司;尿素、丙酮、盐酸、氢氧化钾,国药集团化学试剂有限公司;泡沫镍,苏州科盛和金属材料有限公司;高度纯氧气,青岛天源气体有限公司。

  • 仪器:电化学工作站CHI 760E,上海辰华仪器有限公司;旋转圆盘电极仪ALS RRDE-3A,日本;水热合成反应釜LC-KH25,力辰仪器科技有限公司;电热鼓风干燥箱DHG-9075A,上海一恒科学仪器有限公司;X射线衍射仪X’Pert Pro MPD,荷兰;X射线光电子能谱仪ESCALAB 250,美国Thermo-VG Scientific;扫描电子显微镜SU8010,日本日立;透射电子显微镜JEM-2100F,美国Phenom-world公司。

  • 1.2 催化剂的制备

  • (1)NiOOH/NF(D)。将40 mmol丙三醇和40 mmol尿素混合,在80℃下搅拌30 min形成二元DES。将NF放入该二元DES并转移至反应釜中,置于鼓风干燥箱中180℃反应8 h。待反应釜冷却后,取出催化剂并用去离子水洗涤干净,在真空干燥箱60℃条件下干燥12 h,得到的催化剂记为NiOOH/NF(D)。

  • (2)NiOOH/NF(W)。将丙三醇替换为水,重复(1)中的步骤,得到的催化剂记为NiOOH/NF(W)。

  • (3)CoCO3-NiOOH/NF(D)。如图1所示,将40 mmol丙三醇和40 mmol尿素混合,在80℃下搅拌30 min,称取10 mmol CoCl2·6H2O加入该溶液中继续搅拌30 min得到三元DES。将泡沫镍(NF)放入该三元DES并转移至反应釜中,置于鼓风干燥箱中180℃反应8 h。待反应釜冷却后,取出催化剂并用去离子水洗涤干净,在真空干燥箱60℃干燥12 h,得到的催化剂记为CoCO3-NiOOH/NF(D)。

  • 图1 CoCO3-NiOOH/NF(D)的制备流程示意图

  • Fig.1 Schematic illustration for the synthesis of CoCO3-NiOOH/NF (D)

  • (4)CoCO3-NiOOH/NF(W)。将丙三醇替换为水,重复(3)中的步骤,得到的催化剂记为CoCO3-NiOOH/NF(W)。

  • 2 结果分析

  • 2.1 催化剂结构及形貌表征

  • 为确认NF载体表面的活性物种,分别对样品NiOOH/NF(W)、NiOOH/NF(D)、CoCO3-NiOOH/NF(W)和CoCO3-NiOOH/NF(D)进行X-射线衍射(XRD)测试分析。由图2可以看出,4种样品在44.50°、51.85°和76.38°存在明显衍射峰,分别对应于NF(JCPDs:87-0712)的(111)、(200)和(220)晶面。考虑到NF载体具有很强的XRD峰,为更清晰地观察到NF表面的活性物种,对数据结果进行局部放大(右上角插图),可以发现2种催化剂均存在NiOOH和CoCO3,这与高分辨透射电子显微镜(HRTEM)中发现的NiOOH晶格一致,且CoCO3-NiOOH/NF(W)中存在比较尖锐的CoCO3的峰,结晶性较好。DES与传统溶剂不同的微环境导致CoCO3晶体在成核过程中更易形成无序的结构,使催化剂的结晶度降低。

  • 图2 不同种类催化剂的XRD图

  • Fig.2 XRD patterns of different catalysts

  • 图3为传统水热法制备的NiOOH/NF(W)与基于丙三醇/尿素二元DES溶剂热体系制备的NiOOH/NF(D)催化剂的扫描电子显微镜(SEM)图像。相较于图3(a)中的表面平滑的NF载体,图3(b)、(e)图像显示出NiOOH/NF(W)块体结构,源于水热条件下产生并附着在NF的表面的NiOOH。由于DES体系对NF的形貌的诱导调控作用,图3(c)、(f)中NiOOH/NF(D)催化剂的基本形貌呈现为存在少量裂纹的轻微卷曲三维网状结构。相较于块体结构,这种三维网状结构具有丰富的多级孔道能够充分暴露活性位点,为三相界面的充分反应创造优越的环境,有利于促进电子传输和离子扩散速率的提高。

  • 图3 不同催化剂的SEM图

  • Fig.3 SEM images of different catalysts

  • 为观察催化剂形貌特征,对传统水热法制备的CoCO3-NiOOH/NF(W)催化剂和DES溶剂热法原位合成的CoCO3-NiOOH/NF(D)复合催化剂进行SEM和透射电子显微镜(TEM)表征,结果见图4。由图4(a)看出,CoCO3-NiOOH/NF(W)的SEM图呈现出不规则的条状结构且出现整块断裂的现象,源于水热过程中NF表面形成的NiOOH与CoCO3复合后由片状结构转变为条状结构,沉积在NF的表面,并未与NF很好的结合。由图4(b)看出,CoCO3-NiOOH/NF(D)形貌为三维网状的纳米花状。DES对NF进行形貌调控的同时,生成的CoCO3与NiOOH会均匀复合并原位生长在NF上,从而影响CoCO3-NiOOH/NF(D)的形貌。超薄纳米片组成的网状结构表现出更好的延展性,说明CoCO3与NiOOH可以很好地结合并原位生长在NF上。独特超薄纳米片结构的存在,为水分子的吸附构筑了优越的环境,实现活性位点的高效暴露,并显著增强了材料的导电性且纳米片之间的开放结构有利于促进材料与电解质的充分接触,提高离子扩散效率,从而提高OER性能。

  • 由图5(c)、(d)看出,CoCO3-NiOOH/NF(W)为条状结构,CoCO3-NiOOH/NF(D)为超薄片组成的纳米花状结构。在HRTEM图中,CoCO3-NiOOH/NF(W)显示出非常清晰的晶格条纹(图5(e)),其中间距为0.274、0.233和0.240 nm分别为CoCO3(JCPDs:11-0692)的(104)、(110)晶面和NiOOH(JCPDs:27-0956)的(011)晶面。由图5(f)看出,基于三元DES制备的CoCO3-NiOOH/NF(D)复合催化剂清晰可见的晶格主要对应CoCO3的(104)晶面和NiOOH的(101)晶面,且CoCO3-NiOOH/NF(D)复合催化剂中存在NF(JCPDs:89-7111)的(111)晶面。由于三元DES独特的微反应环境,原位反应生成CoCO3,并同时刻蚀NF生成NiOOH,原位反应促使CoCO3与NiOOH更好地结合。此外,CoCO3-NiOOH/NF(D)复合催化剂中还含有部分无定形结构,其主要来自无定形CoCO3,这种无序结构带来更多活性位点和更复杂的表面形貌,可增强催化剂的吸附能力,有利于提升催化剂的OER催化活性。

  • 为探究溶剂热条件下催化剂的生长形成机制,对不同反应温度和时间条件下合成的CoCO3-NiOOH/NF(D)催化剂进行SEM分析,结果见图5。图5(a)~(d)为不同反应时间下CoCO3-NiOOH/NF(D)催化剂的SEM图,可以看出,反应时间为4 h时催化剂表面为较小的颗粒状,延长时间至8 h时催化剂表面出现网状交联结构;进一步延长反应时间则开始出现团聚现象,网状结构的连接处堆叠明显,至反应16 h时催化剂出现大块团。因此8 h为最佳反应溶剂热时间。图5(e)~(h)为不同反应温度下CoCO3-NiOOH/NF(D)催化剂的SEM图,可以看出反应温度较低时(140℃)催化剂表面未能形成网状结构,而是呈现裂痕与小块颗粒分布。随着反应温度的升高网状交联结构开始出现,并在180℃时最为明显,颗粒呈分散状态,利于反应过程中的传质和活性位暴露;将反应温度升至200℃后,表面出现大裂痕且网状结构消失,表明过高的反应温度会破坏泡沫镍基底。因此,180℃为优选的溶剂热温度。

  • 图4 不同催化剂的SEM、TEM和HRTEM图

  • Fig.4 SEM, TEM and HRTEM images of different catalysts

  • 图5 不同条件合成的CoCO3-NiOOH/NF(D)的SEM图

  • Fig.5 SEM images of CoCO3-NiOOH/NF (D) synthesized under different conditions

  • 为探究4个样品表面元素组成及价态,利用X射线光电子能谱(XPS)对样品进行分析,结果见图6。图6(a)中N元素主要来自于尿素中的N,由于CoCO3-NiOOH/NF(W)和CoCO3-NiOOH/NF(D)的N相对于其他元素含量较少,所以N的信号强度较弱。由图6(b)看出,CoCO3-NiOOH/NF(W)和CoCO3-NiOOH/NF(D)复合催化剂中的C主要存在C—C(284.8 eV)、C—O(286.0 eV)、O—C O(288.7 eV)和N—C=O(289.4 eV)。与CoCO3-NiOOH/NF(W)相比,CoCO3-NiOOH/NF(D)的O—C O的结合能低0.5 eV,这归因于DES具有比水溶剂中更强的分子间作用力以及在CoCO3生长过程中产生的缺陷,更易与NiOOH形成稳定的复合结构。由图6(c)看出,在CoCO3-NiOOH/NF(D)与CoCO3-NiOOH/NF(W)中,O的存在形式主要为OH(531.0 eV)、O—CO(531.7 eV)及Ov(532.4 eV),证明OH、Ov及CO32-的存在。氧空位缺陷的存在可以有效调整CoCO3及NF表面的电子结构,提升界面之间的电子导电率。此外氧空位缺陷可作为有效吸附位点调节反应中间体的吸附能,促进反应物在催化剂表面的吸附。由图6(d)看出,主要包括Co 2p3/2、Co 2p1/2自旋轨道及2个卫星峰,进一步分峰拟合,位于780.9和796.7 eV处的峰对应Co2+的2p3/2和2p1/2轨道,位于783.4和798.9 eV处的峰对应Co3+的2p3/2和2p1/2轨道,表明样品中Co元素的电子价态为+2和+3价共存,这归因于氧空位缺陷的产生以及与NiOOH的紧密复合,使Co的电子云密度发生改变。与CoCO3-NiOOH/NF(W)相比,基于三元DES溶剂热体系所得CoCO3-NiOOH/NF(D)复合催化剂含有更多的氧空位缺陷,Co 2p轨道的电子密度更高,有利于OER反应中间体的吸附和活化,降低反应能垒,促进电子转移从而提升OER反应动力学过程。

  • 图6 不同催化剂的XPS谱图

  • Fig.6 XPS spectra of different catalysts

  • 2.2 催化剂电化学性能

  • 为探究不同合成条件对电催化OER性能的影响,采用三电极体系对不同条件下合成的催化剂进行OER催化性能测试。图7(a)、(b)为在不同的溶剂热时间和温度条件下制备的CoCO3-NiOOH/NF(D)复合催化剂的极化曲线(LSV)。溶剂热时间和温度会直接影响催化剂的形貌进而直接影响其OER催化性能。可以看出,随着溶剂热时间的延长和温度的升高,NiOOH与CoCO3可以更有效地结合,并均匀分布在NF的表面,从而提升OER催化性能,但溶剂热时间过长及温度过高时,其生长在NF表面的活性位点相对减少及NiOOH与CoCO3不能更有效地结合,导致OER催化性能降低[30]。因此在溶剂热时间8 h、温度180℃时,所制备的CoCO3-NiOOH/NF(D)复合催化剂的OER活性最佳。图7(c)、(d)为不同催化剂的极化曲线和相对应的Tafel斜率。由7(c)可知,在电流密度为20 mA/cm2下,NiOOH/NF(W)、NiOOH/NF(D)、CoCO3-NiOOH/NF(W)和CoCO3-NiOOH/NF(D)的过电位分别为397、309、407和295 mV。在相同电流密度下,基于DES体系制备的NiOOH/NF(D)和CoCO3-NiOOH/NF(D)复合催化剂拥有更低的过电位。通过对LSV曲线的数据进行处理,得到相应的Tafel斜率(图7(d))。NiOOH/NF(W)、NiOOH/NF(D)、CoCO3-NiOOH/NF(W)和CoCO3-NiOOH/NF(D)催化剂的Tafel斜率分别为199.4、100.2、112.8和78.1 mV/dec。表明基于DES体系制备的NiOOH/NF(D)和CoCO3-NiOOH/NF(D)复合催化剂拥有更小的Tafel斜率,优于传统水热法制备的NiOOH/NF(W)和CoCO3-NiOOH/NF(W)催化剂。其中CoCO3-NiOOH/NF(D)拥有最低的过电位和最小的Tafel斜率,这说明基于三元DES溶剂热法制备的CoCO3-NiOOH/NF(D)催化剂拥有更快的OER反应动力学过程。

  • 图7 不同条件合成的催化剂的极化曲线和Tafel斜率

  • Fig.7 Polarisation curves and Tafel slopes of catalysts synthesized under different conditions

  • 为进一步探究DES体系制备的催化剂具有高活性的原因,在电位区间1.02~1.12 V(vs RHE)内,进行不同扫描速率的循环伏安曲线测试(图8(a)),对数据进行处理,得到催化剂的双电层电容Cdl值,并用以评价催化剂的电化学活性表面积。其中CoCO3-NiOOH/NF(W)和CoCO3-NiOOH/NF(D)催化剂的双电层电容值分别为2.04和3.94 mF/cm2。基于三元DES体系制备的CoCO3-NiOOH/NF(D)催化剂拥有最大的电化学活性面积,可以暴露更多的活性位点,因而具有最佳OER性能。电化学阻抗测试结果可以反应DES对催化剂的导电能力及传质能力的影响。由经过Zview拟合后的Nyquist阻抗(图8(b))可知,这4种催化剂都具有明确的高频圆弧,其中CoCO3-NiOOH/NF(D)圆弧半径最小,说明电子转移速率更高,表明基于三元DES体系构筑的CoCO3-NiOOH/NF(D)催化剂具有更低的界面电阻,从而能够有效促进电催化反应中的电子转移。催化剂的稳定性也是其应用中的一个重要指标。因此,采用计时电流法对催化剂的稳定性进行评价,通过60 h稳定性测试后的电流保留率确定催化剂稳定性的优劣。如图8(c)、(d),经过60 h后,CoCO3-NiOOH/NF(W)和CoCO3-NiOOH/NF(D)复合催化剂的电流保留率分别为82%和92%,表明基于三元DES溶剂热体系合成的催化剂具有更好的结构稳定性。

  • 图8 不同种类催化剂的电化学性质测试

  • Fig.8 Electrochemical properties of different kinds of catalysts

  • 综上,基于三元DES溶剂热制备的CoCO3-NiOOH/NF(D)催化剂,原位生成的NiOOH与CoCO3能够更加紧密地生长在NF表面,并含有丰富的氧空位缺陷提高反应活性,三维纳米花网状的导电网络结构利于活性位的充分暴露,从而相比于传统水热法制备的催化剂表现出更加优异的催化活性和结构稳定性。

  • 3 结论

  • (1)以NF作为载体和镍源,利用丙三醇、尿素和氯化钴形成的三元DES作为溶剂、反应物和结构导向剂,采用一锅溶剂热法制备出三维纳米花状的泡沫镍负载CoCO3-NiOOH催化剂(CoCO3-NiOOH/NF(D))。

  • (2)在溶剂热温度为180℃、反应时间为8 h的合成条件下,制得的CoCO3-NiOOH/NF(D)表现出优异的OER电催化性能,在20 mA/cm2的电流密度下,过电位仅为295 mV,Tafel斜率为78.1 mV/dec,经过60 h的稳定性测试,电流保留率可达92%,具有优异的长期稳定性。

  • (3)与传统水热法相比,基于DES的溶剂热法可在NF表面生成大量氧空位缺陷和暴露出更多的活性位点,利于NiOOH与CoCO3的复合并原位生长在NF形成三维纳米花网状结构,从而加快电子传质效率,提升电催化OER性能。

  • 参考文献

    • [1] LINDER C,BOYD R,GRECZYNSKI G,et al.Enhanced oxygen-reaction electrocatalysis and corrosion resistance of CoCrFeNi thin films by tuned microstructure and surface oxidation[J].Small Science,2024,4(11):2400296.

    • [2] GUO E,HAO L,HUO Y,et al.Simple synthesis of peanut shell-like MoCoFe-HO@CoMo-LDH for efficient alkaline oxygen evolution reaction[J].Journal of Colloid and Interface Science,2024,664:748-755.

    • [3] 曾小军,金初龙,张祖梁,刘景洲,赵慧琴.2D/2D MXene/TiO2-MoS2异质结构的构建及其高效析氧反应[J/OL].中国石油大学学报(自然科学版).https://link.cnki.net/urlid/37.1441.TE.20250303.1756.002.ZENG Xiaojun,JIN Chulong,ZHANG Zuliang,et al.Construction of 2D/2D MXene/TiO2-MoS2 heterostructures and their efficient oxygen evolution reaction[J].Journal of China University of Petroleum(Edition of Natural Science),20250303.1756.002.

    • [4] MURUGAN N,THANGARASU S,SEO S B,et al.N-doped defect-rich porous carbon nanosheets framework from renewable biomass as efficient metal-free bifunctional electrocatalysts for HER and OER application[J].Renewable Energy,2024,222:119801.

    • [5] ALOTAIBI N H,SHAH J H,NISA M U,et al.Catalytic enhancement of graphene oxide by trace molybdenum oxide nanoparticles doping:optimized electrocatalyst for green hydrogen production[J].International Journal of Hydrogen Energy,2024,62:488-497.

    • [6] XU S,JIAO D,RUAN X,et al.Synergistic modulation of the d-band center in Ni3S2 by selenium and iron for enhanced oxygen evolution reaction(OER)and urea oxidation reaction(UOR)[J].Journal of Colloid and Interface Science,2024,671:46-55.

    • [7] GUO M,DENG R,WANG C,et al.Recent progress of advanced manganese oxide-based materials for acidic oxygen evolution reaction:fundamentals,performance optimization,and prospects[J].Journal of Energy Chemistry,2023,78:537-553.

    • [8] SUN S,ZHANG C,RAN M,et al.Fe-doped promotes phosphorization and dispersibility of Ni catalysts for efficient and stable HER and OER[J].International Journal of Hydrogen Energy,2024,63:133-141.

    • [9] ZHAO Y,YOU J,WANG L,et al.Recent advances in Ni3S2-based electrocatalysts for oxygen evolution reaction[J].International Journal of Hydrogen Energy,2021,46(79):39146-39182.

    • [10] JIANG W,LI H,CHEN Y,et al.OER properties of Ni-Co-CeO2/Ni composite electrode prepared by magnetically induced jet electrodeposition[J].International Journal of Hydrogen Energy,2023,48(11):4287-4299.

    • [11] NI J,LUAN Y,WANG X,et al.Mapping current high-entropy materials for water electrolysis:from noble metal to transition metal[J].Journal of Materials Chemistry A,2024,12(24):14268-14301.

    • [12] WANG H,PEI Y,WANG K,et al.First-row transition metals for catalyzing oxygen redox[J].Small,2023,19(46):2304863.

    • [13] LI L,CAO X,HUO J,et al.High valence metals engineering strategies of Fe/Co/Ni-based catalysts for boosted OER electrocatalysis[J].Journal of Energy Chemistry,2023,76:195-213.

    • [14] 熊靖,孙彦,马亚肖,等.氧化铈纳米棒负载钯-钴双金属催化甲烷氧化[J].中国石油大学学报(自然科学版),2025,49(3):223-231.XIONG Jing,SUN Yan,MA Yaxiao,et al.Methane oxidation catalyzed by Pd-Co bimetallic species supported on CeO2 nanorods[J].Journal of China University of Petroleum(Edition of Natural Science),2025,49(3):223-231.

    • [15] GAO H,XU J,ZHANG X,et al.Benchmarking the intrinsic activity of transition metal oxides for the oxygen evolution reaction with advanced nanoelectrodes[J].Angewandte Chemie International Edition,2024,63(23):e202404663.

    • [16] MA W,DONG Y,LI J,et al.Recent strategies for improving the catalytic activity of ultrathin transition metal sulfide nanosheets toward the oxygen evolution reaction[J].Materials Today Energy,2024,40:101492.

    • [17] ANNE ACEDERA R,THERESSE DUMLAO A,DONN MATIENZO D,et al.Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions[J].Journal of Energy Chemistry,2024,89:646-669.

    • [18] AYOM G E,KHAN M D,DE SOUZA F M,et al.Phase transformation in nickel-rich phosphides(Ni2P and Ni12P5)via transition metal(Cu,Mn)substitution enabling high supercapacitance and water splitting[J].Journal of Energy Storage,2024,97:112882.

    • [19] LI D,HUANG Y,LI Z,et al.Deep eutectic solvents derived carbon-based efficient electrocatalyst for boosting H2 production coupled with glucose oxidation[J].Chemical Engineering Journal,2022,430:132783.

    • [20] SAMAGE A,PRAMODA K,HALAKARNI M,et al.One-step rapid conversion of electroactive CoMnO nanostructures using a deep eutectic solvent as the template,solvent,and source[J].ACS Applied Energy Materials,2023,6(4):2412-2422.

    • [21] JIANG W Q,CHEN Y M,BI W T.Synthesis of porous organic framework materials based on deep eutectic solvents and their application in solid-phase extraction[J].Se Pu,2023,41(10):901-910.

    • [22] WU J,LIANG Q,YU X,et al.Deep eutectic solvents for boosting electrochemical energy storage and conversion:a review and perspective[J].Advanced Functional Materials,2021,31(22):2011102.

    • [23] ABBOTT A P,CAPPER G,DAVIES D L,et al.Novel solvent properties of choline chloride/urea mixtures[J].Chemical Communications,2003(1):70-71.

    • [24] CHEN Y,MU T.Revisiting greenness of ionic liquids and deep eutectic solvents[J].Green Chemical Engineering,2021,2(2):174-186.

    • [25] ZHANG C,XIN B,CHEN T,et al.Deep eutectic solvent strategy enables an octahedral Ni-Co precursor for creating high-performance NiCo2O4 catalyst toward oxygen evolution reaction[J].Green Energy & Environment,2022,7(6):1217-1227.

    • [26] LIU Y,GUO H W,ZENG F Y.Green fabrication of nanostructured Ni(OH)2/Ni/Carbon felt electrodes with water-containing deep eutectic solvent for enhanced water electrolysis performance[J].Journal of Power Sources,2023,570:233043.

    • [27] GUAN S,XU B,WU J,et al.High-entropy materials based on deep eutectic solvent for boosting oxygen evolution reaction[J].Fuel,2024,358:130315.

    • [28] MAURYA P K,MISHRA A K.In situ grown vertically oriented wrinkled MoSe2 nanosheets over different substrates as bifunctional electrocatalysts for water splitting[J].ACS Applied Energy Materials,2024,7(2):487-498.

    • [29] ZHANG G,LI Z,ZENG J,et al.Ferric ions leached from Fe-based catalyst to trigger the dynamic surface reconstruction of nickel foam for high-efficient OER activity[J].Applied Catalysis B:Environmental,2022,319:121921.

    • [30] 曾小军,张祖梁,金初龙.Ti3C2Tx纳米带/MoCoPx异质结构的构筑及其高效电催化OER性能[J].中国石油大学学报(自然科学版),2023,47(4):190-197.ZENG Xiaojun,ZHANG Zuliang,JIN Chulong.Construction of Ti3C2Tx nanoribbons/MoCoPx heterostructures and high-efficient electrocatalytic OER performance[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(4):190-197.

  • 参考文献

    • [1] LINDER C,BOYD R,GRECZYNSKI G,et al.Enhanced oxygen-reaction electrocatalysis and corrosion resistance of CoCrFeNi thin films by tuned microstructure and surface oxidation[J].Small Science,2024,4(11):2400296.

    • [2] GUO E,HAO L,HUO Y,et al.Simple synthesis of peanut shell-like MoCoFe-HO@CoMo-LDH for efficient alkaline oxygen evolution reaction[J].Journal of Colloid and Interface Science,2024,664:748-755.

    • [3] 曾小军,金初龙,张祖梁,刘景洲,赵慧琴.2D/2D MXene/TiO2-MoS2异质结构的构建及其高效析氧反应[J/OL].中国石油大学学报(自然科学版).https://link.cnki.net/urlid/37.1441.TE.20250303.1756.002.ZENG Xiaojun,JIN Chulong,ZHANG Zuliang,et al.Construction of 2D/2D MXene/TiO2-MoS2 heterostructures and their efficient oxygen evolution reaction[J].Journal of China University of Petroleum(Edition of Natural Science),20250303.1756.002.

    • [4] MURUGAN N,THANGARASU S,SEO S B,et al.N-doped defect-rich porous carbon nanosheets framework from renewable biomass as efficient metal-free bifunctional electrocatalysts for HER and OER application[J].Renewable Energy,2024,222:119801.

    • [5] ALOTAIBI N H,SHAH J H,NISA M U,et al.Catalytic enhancement of graphene oxide by trace molybdenum oxide nanoparticles doping:optimized electrocatalyst for green hydrogen production[J].International Journal of Hydrogen Energy,2024,62:488-497.

    • [6] XU S,JIAO D,RUAN X,et al.Synergistic modulation of the d-band center in Ni3S2 by selenium and iron for enhanced oxygen evolution reaction(OER)and urea oxidation reaction(UOR)[J].Journal of Colloid and Interface Science,2024,671:46-55.

    • [7] GUO M,DENG R,WANG C,et al.Recent progress of advanced manganese oxide-based materials for acidic oxygen evolution reaction:fundamentals,performance optimization,and prospects[J].Journal of Energy Chemistry,2023,78:537-553.

    • [8] SUN S,ZHANG C,RAN M,et al.Fe-doped promotes phosphorization and dispersibility of Ni catalysts for efficient and stable HER and OER[J].International Journal of Hydrogen Energy,2024,63:133-141.

    • [9] ZHAO Y,YOU J,WANG L,et al.Recent advances in Ni3S2-based electrocatalysts for oxygen evolution reaction[J].International Journal of Hydrogen Energy,2021,46(79):39146-39182.

    • [10] JIANG W,LI H,CHEN Y,et al.OER properties of Ni-Co-CeO2/Ni composite electrode prepared by magnetically induced jet electrodeposition[J].International Journal of Hydrogen Energy,2023,48(11):4287-4299.

    • [11] NI J,LUAN Y,WANG X,et al.Mapping current high-entropy materials for water electrolysis:from noble metal to transition metal[J].Journal of Materials Chemistry A,2024,12(24):14268-14301.

    • [12] WANG H,PEI Y,WANG K,et al.First-row transition metals for catalyzing oxygen redox[J].Small,2023,19(46):2304863.

    • [13] LI L,CAO X,HUO J,et al.High valence metals engineering strategies of Fe/Co/Ni-based catalysts for boosted OER electrocatalysis[J].Journal of Energy Chemistry,2023,76:195-213.

    • [14] 熊靖,孙彦,马亚肖,等.氧化铈纳米棒负载钯-钴双金属催化甲烷氧化[J].中国石油大学学报(自然科学版),2025,49(3):223-231.XIONG Jing,SUN Yan,MA Yaxiao,et al.Methane oxidation catalyzed by Pd-Co bimetallic species supported on CeO2 nanorods[J].Journal of China University of Petroleum(Edition of Natural Science),2025,49(3):223-231.

    • [15] GAO H,XU J,ZHANG X,et al.Benchmarking the intrinsic activity of transition metal oxides for the oxygen evolution reaction with advanced nanoelectrodes[J].Angewandte Chemie International Edition,2024,63(23):e202404663.

    • [16] MA W,DONG Y,LI J,et al.Recent strategies for improving the catalytic activity of ultrathin transition metal sulfide nanosheets toward the oxygen evolution reaction[J].Materials Today Energy,2024,40:101492.

    • [17] ANNE ACEDERA R,THERESSE DUMLAO A,DONN MATIENZO D,et al.Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions[J].Journal of Energy Chemistry,2024,89:646-669.

    • [18] AYOM G E,KHAN M D,DE SOUZA F M,et al.Phase transformation in nickel-rich phosphides(Ni2P and Ni12P5)via transition metal(Cu,Mn)substitution enabling high supercapacitance and water splitting[J].Journal of Energy Storage,2024,97:112882.

    • [19] LI D,HUANG Y,LI Z,et al.Deep eutectic solvents derived carbon-based efficient electrocatalyst for boosting H2 production coupled with glucose oxidation[J].Chemical Engineering Journal,2022,430:132783.

    • [20] SAMAGE A,PRAMODA K,HALAKARNI M,et al.One-step rapid conversion of electroactive CoMnO nanostructures using a deep eutectic solvent as the template,solvent,and source[J].ACS Applied Energy Materials,2023,6(4):2412-2422.

    • [21] JIANG W Q,CHEN Y M,BI W T.Synthesis of porous organic framework materials based on deep eutectic solvents and their application in solid-phase extraction[J].Se Pu,2023,41(10):901-910.

    • [22] WU J,LIANG Q,YU X,et al.Deep eutectic solvents for boosting electrochemical energy storage and conversion:a review and perspective[J].Advanced Functional Materials,2021,31(22):2011102.

    • [23] ABBOTT A P,CAPPER G,DAVIES D L,et al.Novel solvent properties of choline chloride/urea mixtures[J].Chemical Communications,2003(1):70-71.

    • [24] CHEN Y,MU T.Revisiting greenness of ionic liquids and deep eutectic solvents[J].Green Chemical Engineering,2021,2(2):174-186.

    • [25] ZHANG C,XIN B,CHEN T,et al.Deep eutectic solvent strategy enables an octahedral Ni-Co precursor for creating high-performance NiCo2O4 catalyst toward oxygen evolution reaction[J].Green Energy & Environment,2022,7(6):1217-1227.

    • [26] LIU Y,GUO H W,ZENG F Y.Green fabrication of nanostructured Ni(OH)2/Ni/Carbon felt electrodes with water-containing deep eutectic solvent for enhanced water electrolysis performance[J].Journal of Power Sources,2023,570:233043.

    • [27] GUAN S,XU B,WU J,et al.High-entropy materials based on deep eutectic solvent for boosting oxygen evolution reaction[J].Fuel,2024,358:130315.

    • [28] MAURYA P K,MISHRA A K.In situ grown vertically oriented wrinkled MoSe2 nanosheets over different substrates as bifunctional electrocatalysts for water splitting[J].ACS Applied Energy Materials,2024,7(2):487-498.

    • [29] ZHANG G,LI Z,ZENG J,et al.Ferric ions leached from Fe-based catalyst to trigger the dynamic surface reconstruction of nickel foam for high-efficient OER activity[J].Applied Catalysis B:Environmental,2022,319:121921.

    • [30] 曾小军,张祖梁,金初龙.Ti3C2Tx纳米带/MoCoPx异质结构的构筑及其高效电催化OER性能[J].中国石油大学学报(自然科学版),2023,47(4):190-197.ZENG Xiaojun,ZHANG Zuliang,JIN Chulong.Construction of Ti3C2Tx nanoribbons/MoCoPx heterostructures and high-efficient electrocatalytic OER performance[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(4):190-197.