-
乙炔(C2H2)由石油烃在高温无催化剂条件下热裂解而成,可用于照明、焊接及金属切割,也是制造乙醛、醋酸、苯、合成橡胶、合成纤维等的基本原料[1-2]。在生产C2H2的过程中往往伴随着二氧化碳(CO2)等副产物生成。因此迫切需要寻找一种高效的C2H2/CO2分离方法来纯化C2H2,更好地满足不同领域的需求。由于两种气体具有相似的形状(线性)、尺寸和沸点,分离C2H2/CO2极具挑战性[3-7]。现有的分离技术(如低温精馏)不仅能耗高,而且有一定的危险。吸附法脱除CO2是一种新兴的分离方法,具有工艺简单高效、节能、分离效果好等优点[8-11]。金属-有机框架(metal-organic framework,MOF)材料是由金属离子或离子簇和有机配体通过配位键自组装形成的具有周期性网络结构的晶态多孔材料[12-15]。与传统无机多孔材料相比,MOF具有比表面积高、孔径可调等优点,可广泛应用于气体储存与分离[16-19]、质子传导[20-22]、催化[23-24]、化学传感[25-26]等领域。鉴于MOF具有骨架可修饰,孔隙可调节等优势,在C2H2/CO2吸附分离领域显现出广阔的应用前景。结合之前的文献报道,可以发现对有机配体功能化(如进行—NH2、—OH、—OCH3或卤素等官能团修饰),有望利用分子筛分和引入特定气体结合位点等策略实现C2H2/CO2的高效分离[27-29]。官能团的修饰位置也至关重要[30]。Fu等[31]报道的JXNU-12(F)由于暴露在孔表面的氟基团的大电负性和极化率,增强了框架对C2H2的相互作用,使得其对C2H2/CO2的分离选择性为JXNU-12的2倍。Yu等[32]利用官能团对MOF孔道进行修饰,合成了一类新型Zn-MOFs(SNNU-334-336),超微孔隙度和特殊的穿插结构使这些Zn-MOFs具有极好的物理和化学稳定性并展现出特殊的CO2/C2H2反向吸附分离效果。笔者从配体设计出发,选用—OMe对[1,1′:3′,1′-三苯基]-4,4′,5′-三羧酸配体进行功能化,并改变配体修饰的位置,构筑2种同构Cu-MOF(UPC-55和UPC-56),探究官能团功能化对C2H2/CO2吸附分离性能的影响。
-
1 试验
-
1.1 仪器和试剂
-
仪器:Super Nova型X-射线单晶衍射仪(美国Agilent公司);VERTEX型傅里叶变换红外光谱仪(德国Bruker公司);TGA-DSC-1型同步热分析仪(瑞士Mettler Toledo公司),在N2氛围(100 mL/min)中以10℃/min的加热速率从40℃升至 900℃;ASAP-2020型气体吸附测试仪(美国麦克仪器公司)。
-
试剂:3,5-二溴苯甲酸甲酯、联硼酸频那醇酯、[1,1′-二苯膦二茂铁]二氯钯、4-溴-3-甲氧基苯甲酸甲酯、四(三苯基膦)钯、碳酸钾(K2CO3),安耐吉化学有限公司;硝酸铜(Cu(NO3)2·3H2O)、N′N-二甲基甲酰胺(DMF),萨恩化学技术(上海)有限公司,为分析纯试剂,溶剂交换中采用的甲醇(CH3OH)、二氯甲烷(CH2Cl2)为色谱纯国药试剂,均没有进行进一步纯化;试验用水均为去离子水。
-
1.2 配体的制备
-
配体结构见图1,合成路线见图2。
-
配体PT1和配体PT2的合成方法类似,以PT1为代表描述。
-
如图2所示,将3,5-二溴苯甲酸甲酯(25 g)、联硼酸频那醇酯(47.51 g)、碳酸钾(33.45 g)和[1,1′-二苯膦二茂铁]二氯化钯(1.556 g)加入500 mL三口烧瓶中并置于氮气氛围中,然后加入250 mL脱气干燥的DMF溶液,在100℃下搅拌72 h。反应结束加入大量的H2O,抽滤除去溶剂,所得固体用CH2Cl2溶解,萃取收集有机相后经过柱层析(CH2Cl2)得到白色固体A。
-
在1 L三颈烧瓶中加入上述白色固体A(15.52 g)、4-溴-3-甲氧基苯甲酸甲酯(23.53 g)、碳酸钾(27.64 g)和四(三苯基膦)钯(2.312 g),并置于氮气氛围中,然后加入500 mL脱气干燥的1,4-二氧六环溶液,在95℃下搅拌72 h。反应结束后旋蒸除去有机溶剂,用CH2Cl2溶解所得固体,萃取收集有机相后经过柱层析(CH2Cl2)得到白色固体B。
-
将所得的酯化合物溶解于300 mL NaOH/THF/MeOH混合溶液中,80℃下搅拌回流24 h。冷却至室温后旋蒸除去有机相。然后将所得固体溶解于大量H2O中,抽滤除去不溶杂质,所得滤液用浓盐酸调节pH=3~4,在此过程中不断有白色絮状物析出。抽滤收集沉淀物,置于80℃烘箱中干燥12 h,得到PT1。1H NMR(400 MHz,DMSO-d6,10-6):13.15(s,3H),8.07(d,J=1.6 Hz,2H),7.88(d,J=1.5 Hz,1H),7.66(dd,J=9.7,1.9 Hz,4H),7.54(d,J=7.7 Hz,2H),3.87(s,6H)(图3)。
-
PT1用于制备UPC-55。
-
图1 配体结构
-
Fig.1 Structure of ligands
-
图2 配体合成路线
-
Fig.2 Synthesis route of ligand
-
图3 配体的核磁氢谱图
-
Fig.3 1H-NMR spectrum of ligand
-
1.3 晶体的制备
-
UPC-55的制备。用电子天平准确称量PT1(5 mg),Cu(NO3)2·3H2O(30 mg)放入10 mL的玻璃小瓶中,加入6 mL的DMF及2 mL的H2O。超声混合均匀,密封放入75℃烘箱中加热720 min,烘箱降至室温后,得到蓝色块状晶体。
-
UPC-56的制备。用电子天平准确称量PT2(3 mg),Cu(NO3)2·3H2O(10 mg)放入10 mL的玻璃小瓶中,加入6 mL的DMF及2 mL的H2O。超声混合均匀,密封放入80℃烘箱中加热720 min,烘箱降至室温后,得到蓝色块状晶体。
-
1.4 气体吸附测试
-
用色谱甲醇和色谱二氯甲烷对UPC-55、UPC-56分别进行3次溶剂交换,并在100℃于真空下脱气10 h,以获得充分活化的试样。所有气体吸附测试均在ASAP-2020型气体吸附测试仪上进行,包括77 K下的氮气吸附以及273和298 K下的CO2和C2H2吸附。为了将温度稳定在77、273和298 K,在测试过程中分别采用液氮浴、冰水浴和水浴。
-
2 结果分析
-
2.1 UPC-55和UPC-56的结构
-
晶体数据均采用超新星衍射仪(SuperNova)和Eos CCD探测器收集。选择合适的高质量晶体置于载体平台的Loop环上,采用单色铜靶Kα(λ=1.54184 Å)射线,通过ω-2θ扫描方式,收集晶体衍射数据,使用CrysAlisPro软件包进行数据还原并进行吸收校正分析。结构采用Olex软件包的SHELXS程序直接求解,然后采用SHELXL全矩阵最小二乘法进行精修。晶体学数据见表1,其中,a、b、c指晶体的晶轴长度,分别对应晶体在三维空间中3个不同方向上的边长;α为晶轴 b 和c之间的夹角;β为晶轴a和c之间的夹角;γ为晶轴a和b之间的夹角。
-
单晶X-射线结构分析表明,UPC-55和UPC-56呈同构关系,结晶于单斜晶系,Immm空间群。选取UPC-55为代表对晶体结构进行描述。如图4所示,UPC-55的次级结构单元(SBU)是由两个相邻的铜和来自4个不同有机配体的4个羧酸基团形成的典型Cu-paddlewheel构型。该结构中有2种SBU,一种由4个间羧酸基配位,另一种由4个对苯甲酸基配位。利用拓扑的思想对其结构进行简化,将SBU简化为4连接节点,将有机配体视为3连接节点,则三维框架可以简化为典型的fmj型拓扑结构。
-
图4 UPC-55的晶体结构分析
-
Fig.4 Crystal structure analysis of UPC-55
-
2.2 UPC-55和UPC-56的基本表征
-
为了表征合成样品的纯度,在室温条件下对UPC-55和UPC-56进行粉末X-射线衍射(PXRD)测试,结果见图5。可以看出,测试样品的PXRD谱图与单晶结构模拟的谱图衍射峰高度十分吻合,衍射峰位置基本相符,这表明所合成的样品相纯度较高,可以满足进一步的测试以及试验要求。
-
图5 UPC-55和UPC-56的PXRD曲线
-
Fig.5 PXRD curves of UPC-55和UPC-56
-
为研究UPC-55和UPC-56的热稳定性,通过热重分析仪在N2氛围下测试其在40~900℃的失重情况,结果见图6(a)、(b)。可以看出,当温度为40~230℃时,UPC-55略微失重是由于失去孔道中少量未配位的溶剂分子;当温度为230~520℃时,热重曲线基本保持平衡;当温度超过520℃后,快速失重,表明UPC-55的结构框架开始坍塌。UPC-56能够在40~500℃内保持良好的热稳定性,在40~350℃内的失重与游离在孔道中少量的DMF及水分子相对应;当加热温度超过500℃,质量迅速下降,晶体框架坍塌。
-
使用德国Bruker Tensor 37型红外光谱仪分别对UPC-55和UPC-56进行红外光谱表征。以KBr混合样品进行压片测试来消除背景干扰,测试的红外波数范围为500~4000 cm-1,结果见图6(c)、(d)。从图6(c)看出,3115 cm-1附近的宽吸收峰来源于UPC-55中H2O的羟基伸缩振动;在1740~1690 cm-1附近,未发现游离—COOH吸收峰,说明配体的羧基已去质子化,相应的在1396和1367 cm-1附近产生了2个吸收峰。同样的图6(d)中3070 cm-1附近的宽吸收峰来源于UPC-56中H2O的羟基伸缩振动;在1740~1690 cm-1附近,未发现游离—COOH吸收峰,说明配体的羧基已去质子化,相应的在1533和1338 cm-1附近产生了2个吸收峰。
-
图6 UPC-55和UPC-56的基本表征
-
Fig.6 Basic characteristics of UPC-55 and UPC-56
-
2.3 UPC-55和UPC-56的气体吸附性能
-
77 K下测定N2吸附等温线,验证其永久孔隙率。如图7(a)和(d),UPC-55和UPC-56均呈现出典型的I型吸附等温线,表明它们的微孔特性。最大吸附量分别为113.4和117.1 cm3/g,BET比表面积分别为242.76和254.63 m2/g,孔径主要分布在3~4 Å,与晶体结构较为吻合。
-
基于UPC-55和UPC-56的永久孔隙率,分别在298 K和273 K下测试其C2H2、CO2的单组分吸附等温线。如图7(b)、(c)、(e)、(f),在1大气压和298 K条件下,UPC-55和UPC-56对C2H2的吸附量分别达到31.8和52.2 cm3/g,与Cu(BDC-Br)[33]、DICRO-4-Ni-i[34]等材料类似,对CO2的吸附量分别为12.6和26.6 cm3/g;随着温度的降低,吸附量略有升高,在273 K下,对C2H2的吸附量为36.2和64.7 cm3/g,对CO2的吸附量为20.5和50.2 cm3/g。从单组分吸附等温线来看,UPC-55和UPC-56均表现出良好的C2H2/CO2分离潜力(表2)。
-
采用理想吸附溶液理论(IAST),计算UPC-55和UPC-56在298 K下对等比例C2H2/CO2的吸附选择性,结果见图8(a)。分离比分别为3.508与5.345。多孔材料中的吸附焓(Qst)反映了框架与被吸附气体分子间的亲和力,通过克劳修斯-克拉珀龙方程(Clausius-Clapeyron equation)对不同气体的吸附焓进行计算。如图8(b),在接近零覆盖时,UPC-55和UPC-56对C2H2和CO2的Qst分别为12.12、10.62和17.21、7.43 kJ/mol。二者对不同气体分子吸附量的差异和Qst的区别使其成为潜在的分离材料。
-
图7 UPC-55和UPC-56在77、273及298 K下的吸附
-
Fig.7 Adsorption of UPC-55 and UPC-56 at 77, 273 and 298 K
-
图8 UPC-55和UPC-56的IAST及Qst曲线
-
Fig.8 IAST and Qst curves for UPC-55 and UPC-56
-
为更直观地分析UPC-55和UPC-56的吸附行为,利用密度泛函理论(DFT)和巨正则蒙特卡罗(GCMC)分别模拟C2H2和CO2分子在框架内的最佳结合位点及吸附能,结果见图9。C2H2和CO2与框架的结合主要是由于氢键和气体分子与框架之间的弱相互作用。UPC-55中的C2H2与来自不同羧基的氧原子通过氢键相互作用,H···O的距离为4.01 Å;而在UPC-56中,框架中的-OMe与C2H2形成了距离更短的H···O(3.49~3.84 Å)。此外由于距离和角度的限制,在UPC-55中,CO2仅与框架形成氢键。然而,—OMe位置的改变使得UPC-56与CO2形成了额外的C···O(3.84 Å)。因此相较于UPC-55,UPC-56表现出更优异的C2H2、CO2吸附能力,进一步说明官能团位置的差异在一定程度上影响了材料的吸附性能。另外由于CO2与框架的距离较远,UPC-55和UPC-56对CO2(16.48和19.17 kJ/mol)的吸附能远小于C2H2(21.46和24.41 kJ/mol)。
-
图9 UPC-55和UPC-56的C2H2、CO2优先吸附位点及相应的吸附能
-
Fig.9 Preferential C2H2 and CO2 adsorption sites and corresponding adsorption energies in UPC-55 and UPC-56
-
3 结束语
-
(1)利用甲氧基功能化的三羧酸配体和硝酸铜,通过溶剂热反应成功构筑2种同构的铜基MOF(UPC-55和UPC-56)。
-
(2)对UPC-55和UPC-56结构表征显示框架具有良好的稳定性。
-
(3)框架中的甲氧基对C2H2的吸附起到关键作用,且官能团位置的差异也对材料性能有一定程度的影响。UPC-55和UPC-56对C2H2的吸附量均显著高于CO2,在298 K下对等比例C2H2/CO2 IAST选择性分别为3.508与5.345。
-
参考文献
-
[1] PÄÄKKÖNEN A,TOLVANEN H,KOKKO L.The economics of renewable CaC2 and C2H2 production from biomass and CaO[J].Biomass and Bioenergy,2019,120:40-48.
-
[2] WENG W,ALDÉN M,LI Z.Simultaneous quantitative detection of HCN and C2H2 in combustion environment using TDLAS[J].Processes,2021,9(11):2033-2043.
-
[3] NIU Z,CUI X,PHAM T,et al.A MOF-based ultra-strong acetylene nano-trap for highly efficient C2H2/CO2 separation[J].Angewandte Chemie International Edition,2021,60(10):5283-5288.
-
[4] YANG Y,ZHANG H,YUAN Z,et al.An ultramicroporous hydrogen-bonded organic framework exhibiting high C2H2/CO2 separation[J].Angewandte Chemie International Edition,2022,61(43):e202207579.
-
[5] YANG S Q,KRISHNA R,CHEN H,et al.Immobilization of the polar group into an ultramicroporous metal-organic framework enabling benchmark inverse selective CO2/C2H2 separation with record C2H2 production[J].Journal of the American Chemical Society,2023,145(25):13901-13911.
-
[6] GAO M Y,SENSHARMA D,BEZRUKOV A A,et al.A robust molecular porous material for C2H2/CO2 separation[J].Small,2023,19(11):2206945-2206952.
-
[7] SUN M,WANG X,GAO F,et al.Synthesis strategies of metal-organic frameworks for CO2 capture[J].Microstructures,2023,3(4):2023032-2023052.
-
[8] 云日娜,罗明检.CO2吸附分离材料的研究进展[J].化工科技,2023,31(5):85-92.YUN Rina,LUO Mingjian.Research progress in CO2 adsorption separation materials[J].Science & Technology in Chemical Industry,2023,31(5):85-92.
-
[9] JUNG Y,KO Y G,NAH I W,et al.Designing large-sized and spherical CO2 adsorbents for highly reversible CO2 capture and low pressure drop[J].Chemical Engineering Journal,2022,427:131781-131789.
-
[10] CANTADOR F D,SUESCUM M D,JIMÉNEZ J R,et al.CO2 adsorption by organohydrotalcites at low temperatures and high pressure[J].Chemical Engineering Journal,2022,431:134324-136338.
-
[11] SUN M,LIU H,WANG X,et al.Metal-ion-tuned metal-organic frameworks for C2H2/CO2 separation[J].Chinese Journal of Structural Chemistry,2023,42(9):100146-100154.
-
[12] FONSECA J,GONG T,JIAO L,et al.Metal-organic frameworks(MOFs)beyond crystallinity:amorphous MOFs,MOF liquids and MOF glasses[J].Journal of Materials Chemistry A,2021,9(17):10562-10611.
-
[13] PETTINARI C,PETTINARI R,DI NICOLA C,et al.Antimicrobial MOFs[J].Coordination Chemistry Reviews,2021,446:214121-214189.
-
[14] 杨融,张雪,王劲博,等.一例具有高效C2H2/CO2分离性能的柱层式多孔配位聚合物[J].离子交换与吸附,2023,39:501-511.YANG Rong,ZHANG Xue,WANG Jinbo,et al.A pillared-layer porous coordination polymer for efficient C2H2/CO2 separation[J].Ion Exchange and Adsorption,2023,39:501-511.
-
[15] SIKDAR N,LAHA S,JENA R,et al.An adsorbate biased dynamic 3D porous framework for inverse CO2 sieving over C2H2[J].Chemical Science,2024,15(20):7698-7706.
-
[16] JIANG C,HAO C,WANG X,et al.Constructing C2H2 anchoring traps within MOF interpenetration nets as C2H2/CO2 and C2H2/C2H4 bifunctional separator[J].Chemical Engineering Journal,2023,453:139713-139720.
-
[17] TAN Y X,LIN J,LI Q H,et al.Overcoming the trade-off between C2H2 sorption and separation performance by regulating metal-alkyne chemical interaction in metal-organic frameworks[J].Angewandte Chemie International Edition,2023,62(22):e202302882.
-
[18] HAO C,GE Z,KRISHNA R,et al.Fine-tuning channel structure and surface chemistry of stable bismuth-organic frameworks for efficient C2H4 purification through reversely trapping CO2 and C2H2[J].Chemical Engineering Journal,2023,471:144533-144544.
-
[19] WANG X,XU M,FAN W,et al.Fe-based meta-organic frameworks:from various synthesis,diverse structures to multifunctional applications [J].Chinese Journal of Chemistry 2023,41:3772-3791.
-
[20] WANG Q,ZHENG X,CHEN H,et al.Synergistic effect of MOF-Directed acid-base pairs for enhanced proton conduction[J].Microporous and Mesoporous Materials,2021,323:111199-111207.
-
[21] LIN F R,LIU Z Y,ZHANG G Q,et al.Understanding proton conduction enhancement of MOF-802 through in situ incorporation of imidazole into its channels[J].Inorganic Chemistry Communications,2023,157:111340-111344.
-
[22] HUANG S Z,LIU S S,ZHANG H J,et al.Dual-functional proton-conducting and pH-sensing polymer membrane benefiting from a Eu-MOF[J].ACS Applied Materials & Interfaces,2020,12(25):28720-28726.
-
[23] 熊靖,孙彦,马亚肖,等.氧化铈纳米棒负载钯-钴双金属催化甲烷氧化[J].中国石油大学学报(自然科学版),2025,49(3):223-231.XIONG Jing,SUN Yan,MA Yaxiao,et al.Methane oxidation catalyzed by Pd-Co bimetallic species supported on CeO2 nanorods[J].Journal of China University of Petroleum(Edition of Natural Science),2025,49(3):223-231.
-
[24] ADEGOKE K A,MAXAKATO N W.Porous metal-organic framework(MOF)-based and MOF-derived electrocatalytic materials for energy conversion [J].Materials Today Energy,2021,21:100816-100844.
-
[25] SHEN Y,TISSOT A,SERRE C.Recent progress on MOF-based optical sensors for VOC sensing[J].Chemical Science,2022,13(47):13978-14007.
-
[26] 张继昌,李振华,聂炜,等.富芳烃重油非均相成核热缩聚法制备中间相炭微球及其电化学性能[J].中国石油大学学报(自然科学版),2025,49(4):203-212.ZHANG Jichang,LI Zhenhua,NIE Wei,et al.Preparation of mesocarbon microbeads by heterogeneous nucleation thermal polycondensation of aromatic-rich heavy oil and their electrochemical properties[J].Journal of China University of Petroleum(Edition of Natural Science),2025,49(4):203-212.
-
[27] MENG L,YANG L,CHEN C,et al.Selective acetylene adsorption within an imino-functionalized nanocage-based metal-organic framework[J].ACS Applied Materials & Interfaces,2020,12(5):5999-6006.
-
[28] ZHANG X,FAN W,JIANG W,et al.Optimizing Fe-based metal-organic frameworks through ligand conformation regulation for efficient dye adsorption and C2H2/CO2 separation[J].Chemistry-A European Journal,2021,27(41):10693-10699.
-
[29] ZHANG Y,HU J,KRISHNA R,et al.Rational design of microporous MOFs with anionic boron cluster functionality and cooperative dihydrogen binding sites for highly selective capture of acetylene[J].Angewandte Chemie International Edition,2020,59(40):17664-17669.
-
[30] HA H,HAHM H,JWA D G,et al.Flexibility in metal-organic frameworks derived from positional and electronic effects of functional groups[J].Crystengcomm,2017,19(36):5361-5368.
-
[31] FU X P,WANG Y L,ZHANG X F,et al.Collaborative pore partition and pore surface fluorination within a metal-organic framework for high-performance C2H2/CO2 separation[J].Chemical Engineering Journal,2022,432:134433-134439.
-
[32] YU J,ZHANG J,ZHANG P,et al.Controllable inverse C2H2/CO2 separation in ultra-stable Zn-organic frameworks for efficient removal of trace CO2 from acetylene[J].Journal of Materials Chemistry A,2022,10(44):23630-23638.
-
[33] CUI H,YE Y,ARMAN H,et al.Microporous copper isophthalate framework of mot topology for C2H2/CO2 separation[J].Crystal Growth & Design,2019,19(10):5829-5835.
-
[34] SCOTT H S,SHIVANNA M,BAJPAI A,et al.Highly selective separation of C2H2 from CO2 by a new dichromate-based hybrid ultramicroporous material[J].ACS Applied Materials & Interfaces,2017,9(39):33395-33400.
-
[35] LUO F,YAN C,DANG L,et al.UTSA-74:a MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation[J].Journal of the American Chemical Society,2016,138(17):5678-5684.
-
[36] YE Y,MA Z,LIN R B,et al.Pore space partition within a metal-organic framework for highly efficient C2H2/CO2 separation[J].Journal of the American Chemical Society,2019,141(9):4130-4136.
-
[37] CHANG G,LI B,WANG H,et al.Control of interpenetration in a microporous metal-organic framework for significantly enhanced C2H2/CO2 separation at room temperature[J].Chemical Communications,2016,52(17):3494-3496.
-
[38] LIU L,YAO Z,YE Y,et al.Integrating the pillared-layer strategy and pore-space partition method to construct multicomponent MOFs for C2H2/CO2 separation[J].Journal of the American Chemical Society,2020,142(20):9258-9266.
-
摘要
利用甲氧基功能化的三羧酸配体和硝酸铜,通过溶剂热反应构筑2种同构的铜基MOF(UPC-55和UPC-56),分别通过单晶X-射线衍射、热重测试和红外光谱测试对其结构及稳定性进行表征与测试。结果表明:甲氧基官能团的修饰使得UPC-55和UPC-56表现出对C2H2的选择性吸附;由于官能团位置的差异,二者的吸附分离能力略有不同,在298 K下,UPC-55和UPC-56对C2H2的吸附量分别为31.8、52.2 cm3/g,等比例C2H2/CO2分离比分别为3.508与5.345。
Abstract
Two isostructural copper-based metal-organic frameworks (UPC-55 and UPC-56) were synthesized via a solvothermal reaction using methoxy-functionalized tricarboxylic acid ligands and copper nitrate. Their structures and stability were characterized and tested through single-crystal X-ray diffraction, thermogravimetric analysis, and infrared spectroscopy. It is found that the treatment of methoxy functional groups makes UPC-55 and UPC-56 exhibit selective adsorption of C2H2. Due to differences in functional group positioning, their adsorption separation capabilities vary slightly. At 298 K, the adsorption of C2H2 by UPC-55 and UPC-56 are 31.8 cm3/g and 52.2 cm3/g. The equal proportional C2H2/CO2 separation ratios are 3.508 and 5.345, respectively.