en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

曾小军(1989-),男,教授,博士,研究方向为能源催化和电磁功能材料。E-mail: zengxiaojun@jcu.edu.cn。

通信作者:

曾小军(1989-),男,教授,博士,研究方向为能源催化和电磁功能材料。E-mail: zengxiaojun@jcu.edu.cn。

中图分类号:O 643.36

文献标识码:A

文章编号:1673-5005(2025)05-0220-07

DOI:10.3969/j.issn.1673-5005.2025.05.022

参考文献 1
LI Zhenxing,HU Mingliang,WANG Ping,et al.Heterojunction catalyst in electrocatalytic water splitting[J].Coordination Chemistry Reviews,2021,439:213953.
参考文献 2
ZENG Xiaojun,SHUI Jianglan,LIU Xiaofang,et al.Single-atom to single-atom grafting of Pt1 onto Fe-N4 center:Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties[J].Advanced Energy Materials,2018,8(1):1701345.
参考文献 3
金初龙,曾小军,张祖梁.CoAl-LDH/CoFe基普鲁士蓝衍生双金属磷化物异质结构的高效电催化OER性能[J].材料研究与应用,2023,17(2):197-204.JIN Chulong,ZENG Xiaojun,ZHANG Zuliang.Efficient electrocatalytic OER performance of CoAl LDH/CoFe-based prussian blue-derived bimetallic phosphide heterostructures[J].Materials Research and Application,2023,17(2):197-204.
参考文献 4
WEI Bo,FU Zhongheng,LEGUT D,et al.Rational design of highly stable and active MXene-based bifunctional ORR/OER double-atom catalysts[J].Advanced Materials,2021,33(40):2102595.
参考文献 5
曾小军,张祖梁,金初龙.Ti3C2Tx纳米带/MoCoPx异质结构的构筑及其高效电催化OER性能[J].中国石油大学学报(自然科学版),2023,47(4):190-197.ZENG Xiaojun,ZHANG Zuliang,JIN Chulong.Construction of Ti3C2Tx nanoribbons/MoCoPx heterostructures and high-efficient electrocatalytic OER performance[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(4):190-197.
参考文献 6
ZENG Xiaojun,YE Yifei,WANG Yongqing,et al.Honeycomb-like MXene/NiFePx-NC with "continuous" single-crystal enabling high activity and robust durability in electrocatalytic oxygen evolution reactions[J].Journal of Advanced Ceramics,2023,12(3):553-564.
参考文献 7
WANG Hao,LEE Jongmin.Recent advances in structural engineering of MXene electrocatalysts[J].Journal of Materials Chemistry A,2020,8(21):10604-10624.
参考文献 8
ZENG Xiaojun,TAN Yunan,XIA Lei,et al.MXene-derived Ti3C2-Co-TiO2 nanoparticle arrays via cation exchange for highly efficient and stable electrocatalytic oxygen evolution[J].Chemical Communications,2023,59(7):880-883.
参考文献 9
HUSSAIN I,HANAN A,BIBI F,et al.Non-Ti(M2X and M3X2)MXenes for energy storage/conversion[J].Advanced Energy Materials,2024,14(34):2401650.
参考文献 10
ZHANG Zuliang,LIANG Tian,JIN Chulong,et al.Synergistically coupling CoS/FeS2 heterojunction nanosheets on a MXene via a dual molten salt etching strategy for efficient oxygen evolution reaction[J].Journal of Materials Chemistry A,2024,12(24):14517-14530.
参考文献 11
FU Qiang,HAN Jiecai,WANG Xianjie,et al.2D transition metal dichalcogenides:design,modulation,and challenges in electrocatalysis[J].Advanced Materials,2021,33(6):1907818.
参考文献 12
WU Kaili,WANG Xin,WANG Wenqing,et al.Charge regulation on hybrid nanosheet stereoassembly via interfacial P-O coupling enables efficient overall water splitting[J].Advanced Functional Materials,2023,33(27):2214075.
参考文献 13
ZENG Xiaojun,ZHAO Chao,JIANG Xiao,et al.Functional tailoring of multi-dimensional pure MXene nanostructures for significantly accelerated electromagnetic wave absorption[J].Small,2023,19(41):2303393.
参考文献 14
ZENG Xiaojun,DUAN Derong,ZHANG Xiaofeng,et al.Doping and interface engineering in a sandwich Ti3C2Tx/MoS2-xPx heterostructure for efficient hydrogen evolution[J].Journal of Materials Chemistry C,2022,10(11):4140-4147.
参考文献 15
HUANG Huawen,CUI Jie,LIU Guoxue,et al.Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage[J].ACS Nano,2019,13(3):3448-3456.
参考文献 16
LIU Zhuo,LÜ He,XIE Ying,et al.A 2D/2D/2D Ti3C2Tx@TiO2@MoS2 heterostructure as an ultrafast and high-sensitivity NO2 gas sensor at room-temperature[J].Journal of Materials Chemistry A,2022,10(22):11980-11989.
参考文献 17
LI Mengyao,CAI Bihai,TIAN Ruoming,et al.Vanadium doped 1T MoS2 nanosheets for highly efficient electrocatalytic hydrogen evolution in both acidic and alkaline solutions[J].Chemical Engineering Journal,2021,409:128158.
参考文献 18
HE Man,CHEN Hao,PENG Hao,et al.Ultralight Ti3C2Tx-derivative chrysanthemum-like Na2Ti3O7/Ti3C2Tx MXene quantum dots 3D/0D heterostructure with advanced microwave absorption performance[J].Chemical Engineering Journal,2023,456:140985.
参考文献 19
XU Deying,KANG Zhaoming,ZHAO Hongbin,et al.Coupling heterostructured CoP-NiCoP nanopin arrays with MXene(Ti3C2Tx)as an efficient bifunctional electrocatalyst for overall water splitting[J].Journal of Colloid and Interface Science,2023,639:223-232.
目录contents

    摘要

    采用湿法刻蚀构建一种2D/2D MXene/TiO2-MoS2异质结构,对其进行X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)和高分辨率透射电镜(HRTEM)等表征,并考察其电化学性能。结果表明:湿法刻蚀获得少层2D MXene纳米片,为超薄2D MoS2纳米片的生长提供更大面积;MoS2纳米片倾向于在MXene纳米片上垂直生长,提供更大表面积和更多可暴露的活性位点;部分MXene纳米片原位衍生为TiO2纳米颗粒,形成MXene、TiO2和MoS2之间丰富异质界面,并调制异质结构的电子结构,有效提高其电荷转移效率,从而提升材料的催化活性和稳定性;2D/2D MXene/TiO2-MoS2异质结构表现出良好的析氧反应(OER)性能,在50 mA/cm2的电流密度下过电位仅为376 mV;在经过40 h的恒压稳定性测试后,电压保持率达99.2%。

    Abstract

    A 2D/2D MXene/TiO2-MoS2 heterostructure was fabricated via wet etching. The structure was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). And the electrochemical properties of the heterostructure were investigated as well. It is found that wet-etching yields few layer of 2D MXene nanosheets, which could provide a larger surface area for the growth of ultrathin 2D MoS2 nanosheets. The MoS2 nanosheets tend to grow vertically on the MXene nanosheets, thereby offering a greater surface area and more exposed active sites. Some MXene nanosheets are in-situ derived into TiO2 nanoparticles, forming a rich heterogeneous interface between MXene, TiO2 and MoS2. And these interfaces modulate the electronic structure of the heterostructure, effectively improving its charge transfer efficiency, thereby improving the catalytic activity and stability of the material. The 2D/2D MXene/TiO2-MoS2 heterostructure exhibits remarkable oxygen evolution reaction (OER) performance, with an overpotential of only 376 mV at a current density of 50 mA/cm2. After a 40 h constant voltage stability test, the voltage retention rate reaches 99.2%.

  • 氢能被视作构建未来可持续能源体系的核心要素[1-3],电化学水分解技术中阳极端的析氧反应(OER)涉及复杂的四电子转移过程,这一过程制约了整体水裂解系统的能量转换效率[4-5]。传统的催化剂主要是Ru基、Ir基及其氧化物基催化剂,但其昂贵的成本和稀缺性限制了大规模推广[6]。在众多二维(2D)材料中,MXene以其独特的金属导电性、出色的亲水性以及可通过化学修饰调节的组成结构,表现出优良的发展前景[7-9]。纯MXene本身缺乏活性位点,导致电催化性能差。MXene的表面官能团主要为亲水性的羟基(—OH)和氧基团(—O),这一结构特性使得MXene能够表现出较好的亲和力,可以有效地与其他材料进行耦合,有助于提高复合材料的功能性和稳定性[10]。2D硫化钼(MoS2)凭借其低廉的成本、与贵金属相媲美的d波段电子结构及化学性质,被认为是极具潜力的催化剂候选材料[11]。MoS2界面相互作用,尤其是由电子结构调制和电荷重分配所诱导的相互作用,能够有效提高电子转移速率,优化反应电催化中间体的吸附和脱附,从而大幅提升其催化活性[12]。笔者以少层的MXene纳米片作为基底制备一种2D/2D MXene/TiO2-MoS2异质结构,对其进行X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)和高分辨率透射电镜(HRTEM)等表征,并考察其电化学性能。

  • 1 试验

  • 试验试剂:钛铝碳Ti3AlC2,纯度为99%,粒径0.075 mm,凯稀陶瓷有限公司;钼酸铵(NH46Mo7O24·4H2O(分析纯)、硫粉(分析纯)、一水合肼(N2H4·H2O,80%),国药集团化学试剂有限公司。

  • 1.1 MXene的制备

  • 取20 mL 9 mol/L盐酸溶液置于100 mL特氟龙容器中,加入1 g LiF后磁力搅拌30 min。随后取1 g Ti3AlC2缓慢加入到上述溶液中,并在40℃下搅拌24 h。反应完成后,将产物离心收集5 min。用20 mL去离子水对沉淀物进行7次离心洗涤,直至其pH值超过6得到多层MXene(ML-MXene)。向离心管中加入40 mL去离子水,并通入氩气30 min。密封离心管后在冰浴条件下超声处理60 min。最终以3500 r/min的速率离心60 min,以收集上层清液,从而获得MXene悬浮液(5 mg/mL)。

  • 1.2 MXene/TiO2-MoS2的制备

  • 称取0.037 6 g硫粉和0.088 3 g钼酸铵置于50 mL特氟龙内胆中。加入4 mL一水合肼,密封后磁力搅拌30 min。加入0.02 g MXene(4 mL),并添加去离子水至特氟龙内胆的80%体积。搅拌30 min后置于200℃的烘箱中反应48 h,冷却至室温后取出。最后,以9000 r/min的速度离心5 min以收集产物,并用去离子水离心洗涤3次。最终将产物在40℃下真空干燥12 h,获得MXene/TiO2-MoS2

  • 1.3 表征

  • 采用D8 Advance型X射线衍射(XRD)(德国Bruker公司)用于分析材料的晶体结构,并使用Cu-Kα射线,λ=0.15406 nm,管电压为40 kV,管电流为30 mA。Thermo escalade250Xi型X射线光电子能谱(XPS,美国赛默飞世尔公司)用于进行表面元素分析,从而揭示材料表面的元素组成及其化学状态。采用了SU-8010型场发射扫描电子显微镜(FE-SEM,日本HITACHI公司)和JEM-2100F型透射电子显微镜(TEM,日本JEOL公司),对材料的微观形貌进行观察。

  • 1.4 电化学测试

  • 所有的电化学测试都在CHI760E电化学工作站(上海辰华仪器有限公司)上进行,并采用三电极系统测试。其中,电解液为KOH(1 mol/L),参比电极为Hg/HgO电极,对电极为碳棒。工作电极通过将MXene/TiO2-MoS2滴涂在面积为1 cm2的泡沫镍(NF)上。首先,将8 mg的催化剂分散在2 mL的Nafion溶液和异丙醇的水溶液(V质量分数5%的NafionV异丙醇V=0.1∶1.7∶2.2)中,超声处理1 h后得到油墨。随后,将油墨滴涂在NF上并干燥。采用线性扫描伏安法(LSV)以1 mV/s的扫描速率对催化剂的OER性能进行了测试。采用循环伏安法(CV)对催化剂的双层电容(Cdl)进行了测试。在频率为0.01 Hz~100 kHz、5 mV的交流电压下测试电化学阻抗谱(EIS)。利用计时电压法来评估催化剂的稳定性。根据ERHE=EHg/HgO+0.0591pH+0.098,参比电极的电位转换为可逆氢电极(RHE)的电位。

  • 2 结果分析

  • 2D/2DMXene/TiO2-MoS2异质结构的合成路径见图1。首先对Ti3AlC2 MAX材料进行Al层蚀刻,通过LiF和HCl的混合溶液的高效刻蚀,可制备少层MXene纳米片,该纳米片用可以作为催化剂的载体。随后采用钼酸铵作为Mo源,硫粉作为S源,水合肼提供还原环境,通过水热合成法在MXene纳米片上实现MoS2纳米片的生长。在此水热合成过程中,MXene会发生结构演变,原位形成锚定在MXene表面的锐钛矿型TiO2纳米颗粒,从而构建一个紧密接触的异质界面。

  • 图1 MXene/TiO2-MoS2的合成示意图

  • Fig.1 Schematic synthesis of MXene/TiO2-MoS2

  • X射线衍射(XRD)图谱见图2。可以看出:与Ti3AlC2 MAX相比,MXene中位于(002)面的衍生峰向低角度偏移,这表明Ti3AlC2 MAX中的Al层被成功去除,Ti3AlC2 MAX相已经成功地转化为MXene相[13];MXene/TiO2-MoS2图谱中位于14.4°、32.7°、35.9°和58.3°有显著的衍射峰,与MoS2的标准衍射数据中的(002)、(100)、(102)和(110)晶面一一对应,证明MoS2纳米片在水热反应过程中被成功合成[14];锐钛矿型TiO2的特征衍射峰主要归因于MXene在水热反应过程中出现氧化现象; MXene的衍射峰并不明显,这是由于MXene的表面被新形成的MoS2纳米片和TiO2纳米颗粒所覆盖[15]

  • 图2 MAX、MXene和MXene/TiO2-MoS2的XRD图谱

  • Fig.2 XRD patterns of MAX, MXene and MXene/TiO2-MoS2

  • 为深入理解2D/2D MXene/TiO2-MoS2异质结构的化学组成和元素价态,采用X射线光电子能谱(XPS)进行分析,结果见图3。由图3(b)看出,位于459.3和465 eV的特征峰归因于Ti—O键的形成,这一现象表明在水热反应过程中MXene原位衍生的TiO2的形成,456.6和461.3 eV处的特征峰对应于MXene中Ti—C键的结合能,为MXene结构特征[16]。由图3(c)看出,在232.1 和228.9 eV处的2个特征峰分别对应于金属相1T-MoS2中的Mo 3d3/2和Mo 3d5/2,而在233.1和229.8 eV的特征峰则归因于半导体相2H-MoS2中Mo4+的Mo 3d3/2和Mo 3d5/2[17]。由图3(d)看出,S 2p3/2峰在161.8 eV和163.0 eV处分裂,表明1T-MoS2和2H-MoS2相中S2-的存在,而163.5和164.5 eV的特征峰进一步证实这两种相的共存。此外,样品中观察到位于168.7 eV处的S4+峰,这主要是由于水热合成过程中的氧化作用所致[17]。Mo 3d和S 2p峰的分裂表明了样品中1T相和2H相MoS2的同时存在。由图3(e)看出,530.8和531.9 eV处的2个特征峰分别代表O—Ti和C—O—Ti的结合能,这进一步证实部分MXene由于氧化作用而转变为TiO2[18]。由图3(f)可拟合出4个特征峰:C—Ti(281.6 eV)、C=C(284.7 eV)、C—O(286.3 eV)和C=O(289 eV)。值得注意的是,C—Ti键的特征峰相对较弱,这可能是由于MXene部分转化为TiO2,以及MoS2对MXene特征峰的覆盖所致[19]

  • 采用场发射扫描电子显微镜(FE-SEM)对2D/2D MXene/TiO2-MoS2异质结构的微观形貌进行观察和分析,结果见图4。由图4(a)看出,采用湿法蚀刻成功地从MAX相中剥离处Al层,形成少层结构的MXene,其厚度约为3.4 nm。这种少层结构的MXene纳米片具有较大的表面积,为活性物质的负载提供丰富的位点。由图4(b)看出,在少层状MXene纳米片的表面生长了大量的厚度约为2.7 nm的超薄MoS2纳米片。这些MoS2纳米片倾向于垂直生长在MXene纳米片基底上,形成了具有丰富界面的异质结构。这种结构不仅促进了活性位点的充分暴露,也增加了材料的电子转移过程。此外,还观察到TiO2纳米颗粒的存在(图4(b)中红色虚线框),这是由于MXene纳米片在制备过程中部分氧化所致。值得注意的是,MoS2和TiO2的存在不仅有效防止了MXene纳米片的聚集,而且显著提高了2D/2D MXene/TiO2-MoS2异质结构的结构稳定性。生长的2D MoS2纳米片可以拟制MXene纳米片再堆积,并且表面衍生的TiO2纳米颗粒与MXene纳米片结合紧密,增加异质界面。这种增强的稳定性对于维持材料在催化过程中的长期性能至关重要。图4中Ti、O、Mo、S和C元素呈均匀分布,表明MoS2纳米片和TiO2纳米颗粒在异质结构中的均匀分布。

  • 图3 MXene/TiO2-MoS2的XPS图谱

  • Fig.3 XPS spectra of MXene/TiO2-MoS2

  • 图4 SEM表征结果及元素分布

  • Fig.4 SEM result and elemental distribution

  • 通过TEM对MXene纳米片中MoS2纳米片和TiO2的纳米颗粒进行观察,结果见图5。由图5(a)可以观察到MoS2呈现出纳米片结构,并且在图5(b)和5(c)中清楚地显示厚度约为2.6 nm的MoS2纳米片生长在MXene的表面。HRTEM图像清晰地显示MoS2和TiO2的晶格条纹。在图5(d)中观察到晶面间距为0.62 nm的条纹,这与MoS2的(002)晶面相吻合。值得注意的是,该MoS2纳米片仅由5~6层组成,表明材料具有纳米和层状结构特征,这种超薄层结构对材料的电子特性和催化活性有显著影响。在图5(e)中观察到晶面间距为0.67 nm的条纹,这也归属于MoS2。此外,还观察到晶面间距为0.18 nm和0.35 nm的条纹(图5(d)、(f)),这分别对应于TiO2的(200)和(101)晶面,说明2D/2D异质结构中的TiO2和MoS2产生。

  • 图5 MXene/TiO2-MoS2的TEM图和HRTEM图

  • Fig.5 TEM and HRTEM images of MXene/TiO2-MoS2

  • 通过对催化剂的物相形貌和元素组成进行细致的分析可知,2D/2D MXene/TiO2-MoS2异质结构表现出丰富的稳定异质界面和较大的表面积。其电催化析氧反应(OER)结果见图6。由图6(a)看出,MXene/TiO2-MoS2异质结构在50 mA/cm2的高电流密度下的过电位仅为376 mV,远远优于纯MoS2的过电位(502 mV)和纯MXene的过电位。这是由于一方面MoS2提供丰富的活性位点,促进电催化过程;另一方面MXene与TiO2和MoS2之间协同作用,2D/2D界面不仅促进了电子的转移,还降低反应的活化能MXene与TiO2和MoS2之间的协同作用。2D/2D MXene/TiO2-MoS2异质结构的催化活性也较为优异(图6(e))。为进一步评估电化学活性面积,采用双层电容(Cdl)值对催化剂进行测量(图6(b))。Cdl能够反映电极材料在电化学过程中可利用的活性表面积。由图6(b)看出,MXene/TiO2-MoS2Cdl值为8.67 mF/cm2,显著高于纯MoS2Cdl值(6.77 mF/cm2)。显然,MoS2纳米片的生长不仅可以提供活性位点,还可以有效避免MXene纳米片的堆积,从而进一步增加电化学活性表面积。为评估催化剂的导电性,对催化剂进行阻抗测试(图6(e)),可以看出,MXene/TiO2-MoS2的导电性优于纯MoS2的导电性,表明MXene/TiO2-MoS2异质结构中2D/2D异质界面形成了良好的电子传输途径,从而获得更佳的导电性。采用计时电压法来评估催化剂的稳定性(图6(d)),可以看出,MXene/TiO2-MoS2在经过40 h的恒压测试后,电压保持率仍有99.2%,说明MXene/TiO2-MoS2具有较好的催化稳定性。

  • 图6 催化剂的电化学性能

  • Fig.6 Electrochemical properties of catalysts

  • 3 结论

  • (1)2D/2D MXene/TiO2-MoS2异质结构具有稳定的片层状结构,大量的2D/2D异质结面有利于电子的传输,并且拥有更大的活性负载面积以及更多暴露的活性位点。

  • (2)MXene、原位衍生的TiO2纳米颗粒和超薄MoS2纳米片之间形成丰富的稳定异质界面,具有调制电子结构的作用,有效提高电荷转移效率,从而提高其电催化活性和稳定性。

  • (3)2D/2D MXene/TiO2-MoS2异质结构表现出良好的OER性能,在50 mA/cm2的电流密度下,仅需376 mV的过电位。在经过40 h的恒压稳定性测试后,其电压保持率仍有99.2%。

  • 参考文献

    • [1] LI Zhenxing,HU Mingliang,WANG Ping,et al.Heterojunction catalyst in electrocatalytic water splitting[J].Coordination Chemistry Reviews,2021,439:213953.

    • [2] ZENG Xiaojun,SHUI Jianglan,LIU Xiaofang,et al.Single-atom to single-atom grafting of Pt1 onto Fe-N4 center:Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties[J].Advanced Energy Materials,2018,8(1):1701345.

    • [3] 金初龙,曾小军,张祖梁.CoAl-LDH/CoFe基普鲁士蓝衍生双金属磷化物异质结构的高效电催化OER性能[J].材料研究与应用,2023,17(2):197-204.JIN Chulong,ZENG Xiaojun,ZHANG Zuliang.Efficient electrocatalytic OER performance of CoAl LDH/CoFe-based prussian blue-derived bimetallic phosphide heterostructures[J].Materials Research and Application,2023,17(2):197-204.

    • [4] WEI Bo,FU Zhongheng,LEGUT D,et al.Rational design of highly stable and active MXene-based bifunctional ORR/OER double-atom catalysts[J].Advanced Materials,2021,33(40):2102595.

    • [5] 曾小军,张祖梁,金初龙.Ti3C2Tx纳米带/MoCoPx异质结构的构筑及其高效电催化OER性能[J].中国石油大学学报(自然科学版),2023,47(4):190-197.ZENG Xiaojun,ZHANG Zuliang,JIN Chulong.Construction of Ti3C2Tx nanoribbons/MoCoPx heterostructures and high-efficient electrocatalytic OER performance[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(4):190-197.

    • [6] ZENG Xiaojun,YE Yifei,WANG Yongqing,et al.Honeycomb-like MXene/NiFePx-NC with "continuous" single-crystal enabling high activity and robust durability in electrocatalytic oxygen evolution reactions[J].Journal of Advanced Ceramics,2023,12(3):553-564.

    • [7] WANG Hao,LEE Jongmin.Recent advances in structural engineering of MXene electrocatalysts[J].Journal of Materials Chemistry A,2020,8(21):10604-10624.

    • [8] ZENG Xiaojun,TAN Yunan,XIA Lei,et al.MXene-derived Ti3C2-Co-TiO2 nanoparticle arrays via cation exchange for highly efficient and stable electrocatalytic oxygen evolution[J].Chemical Communications,2023,59(7):880-883.

    • [9] HUSSAIN I,HANAN A,BIBI F,et al.Non-Ti(M2X and M3X2)MXenes for energy storage/conversion[J].Advanced Energy Materials,2024,14(34):2401650.

    • [10] ZHANG Zuliang,LIANG Tian,JIN Chulong,et al.Synergistically coupling CoS/FeS2 heterojunction nanosheets on a MXene via a dual molten salt etching strategy for efficient oxygen evolution reaction[J].Journal of Materials Chemistry A,2024,12(24):14517-14530.

    • [11] FU Qiang,HAN Jiecai,WANG Xianjie,et al.2D transition metal dichalcogenides:design,modulation,and challenges in electrocatalysis[J].Advanced Materials,2021,33(6):1907818.

    • [12] WU Kaili,WANG Xin,WANG Wenqing,et al.Charge regulation on hybrid nanosheet stereoassembly via interfacial P-O coupling enables efficient overall water splitting[J].Advanced Functional Materials,2023,33(27):2214075.

    • [13] ZENG Xiaojun,ZHAO Chao,JIANG Xiao,et al.Functional tailoring of multi-dimensional pure MXene nanostructures for significantly accelerated electromagnetic wave absorption[J].Small,2023,19(41):2303393.

    • [14] ZENG Xiaojun,DUAN Derong,ZHANG Xiaofeng,et al.Doping and interface engineering in a sandwich Ti3C2Tx/MoS2-xPx heterostructure for efficient hydrogen evolution[J].Journal of Materials Chemistry C,2022,10(11):4140-4147.

    • [15] HUANG Huawen,CUI Jie,LIU Guoxue,et al.Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage[J].ACS Nano,2019,13(3):3448-3456.

    • [16] LIU Zhuo,LÜ He,XIE Ying,et al.A 2D/2D/2D Ti3C2Tx@TiO2@MoS2 heterostructure as an ultrafast and high-sensitivity NO2 gas sensor at room-temperature[J].Journal of Materials Chemistry A,2022,10(22):11980-11989.

    • [17] LI Mengyao,CAI Bihai,TIAN Ruoming,et al.Vanadium doped 1T MoS2 nanosheets for highly efficient electrocatalytic hydrogen evolution in both acidic and alkaline solutions[J].Chemical Engineering Journal,2021,409:128158.

    • [18] HE Man,CHEN Hao,PENG Hao,et al.Ultralight Ti3C2Tx-derivative chrysanthemum-like Na2Ti3O7/Ti3C2Tx MXene quantum dots 3D/0D heterostructure with advanced microwave absorption performance[J].Chemical Engineering Journal,2023,456:140985.

    • [19] XU Deying,KANG Zhaoming,ZHAO Hongbin,et al.Coupling heterostructured CoP-NiCoP nanopin arrays with MXene(Ti3C2Tx)as an efficient bifunctional electrocatalyst for overall water splitting[J].Journal of Colloid and Interface Science,2023,639:223-232.

  • 参考文献

    • [1] LI Zhenxing,HU Mingliang,WANG Ping,et al.Heterojunction catalyst in electrocatalytic water splitting[J].Coordination Chemistry Reviews,2021,439:213953.

    • [2] ZENG Xiaojun,SHUI Jianglan,LIU Xiaofang,et al.Single-atom to single-atom grafting of Pt1 onto Fe-N4 center:Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties[J].Advanced Energy Materials,2018,8(1):1701345.

    • [3] 金初龙,曾小军,张祖梁.CoAl-LDH/CoFe基普鲁士蓝衍生双金属磷化物异质结构的高效电催化OER性能[J].材料研究与应用,2023,17(2):197-204.JIN Chulong,ZENG Xiaojun,ZHANG Zuliang.Efficient electrocatalytic OER performance of CoAl LDH/CoFe-based prussian blue-derived bimetallic phosphide heterostructures[J].Materials Research and Application,2023,17(2):197-204.

    • [4] WEI Bo,FU Zhongheng,LEGUT D,et al.Rational design of highly stable and active MXene-based bifunctional ORR/OER double-atom catalysts[J].Advanced Materials,2021,33(40):2102595.

    • [5] 曾小军,张祖梁,金初龙.Ti3C2Tx纳米带/MoCoPx异质结构的构筑及其高效电催化OER性能[J].中国石油大学学报(自然科学版),2023,47(4):190-197.ZENG Xiaojun,ZHANG Zuliang,JIN Chulong.Construction of Ti3C2Tx nanoribbons/MoCoPx heterostructures and high-efficient electrocatalytic OER performance[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(4):190-197.

    • [6] ZENG Xiaojun,YE Yifei,WANG Yongqing,et al.Honeycomb-like MXene/NiFePx-NC with "continuous" single-crystal enabling high activity and robust durability in electrocatalytic oxygen evolution reactions[J].Journal of Advanced Ceramics,2023,12(3):553-564.

    • [7] WANG Hao,LEE Jongmin.Recent advances in structural engineering of MXene electrocatalysts[J].Journal of Materials Chemistry A,2020,8(21):10604-10624.

    • [8] ZENG Xiaojun,TAN Yunan,XIA Lei,et al.MXene-derived Ti3C2-Co-TiO2 nanoparticle arrays via cation exchange for highly efficient and stable electrocatalytic oxygen evolution[J].Chemical Communications,2023,59(7):880-883.

    • [9] HUSSAIN I,HANAN A,BIBI F,et al.Non-Ti(M2X and M3X2)MXenes for energy storage/conversion[J].Advanced Energy Materials,2024,14(34):2401650.

    • [10] ZHANG Zuliang,LIANG Tian,JIN Chulong,et al.Synergistically coupling CoS/FeS2 heterojunction nanosheets on a MXene via a dual molten salt etching strategy for efficient oxygen evolution reaction[J].Journal of Materials Chemistry A,2024,12(24):14517-14530.

    • [11] FU Qiang,HAN Jiecai,WANG Xianjie,et al.2D transition metal dichalcogenides:design,modulation,and challenges in electrocatalysis[J].Advanced Materials,2021,33(6):1907818.

    • [12] WU Kaili,WANG Xin,WANG Wenqing,et al.Charge regulation on hybrid nanosheet stereoassembly via interfacial P-O coupling enables efficient overall water splitting[J].Advanced Functional Materials,2023,33(27):2214075.

    • [13] ZENG Xiaojun,ZHAO Chao,JIANG Xiao,et al.Functional tailoring of multi-dimensional pure MXene nanostructures for significantly accelerated electromagnetic wave absorption[J].Small,2023,19(41):2303393.

    • [14] ZENG Xiaojun,DUAN Derong,ZHANG Xiaofeng,et al.Doping and interface engineering in a sandwich Ti3C2Tx/MoS2-xPx heterostructure for efficient hydrogen evolution[J].Journal of Materials Chemistry C,2022,10(11):4140-4147.

    • [15] HUANG Huawen,CUI Jie,LIU Guoxue,et al.Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage[J].ACS Nano,2019,13(3):3448-3456.

    • [16] LIU Zhuo,LÜ He,XIE Ying,et al.A 2D/2D/2D Ti3C2Tx@TiO2@MoS2 heterostructure as an ultrafast and high-sensitivity NO2 gas sensor at room-temperature[J].Journal of Materials Chemistry A,2022,10(22):11980-11989.

    • [17] LI Mengyao,CAI Bihai,TIAN Ruoming,et al.Vanadium doped 1T MoS2 nanosheets for highly efficient electrocatalytic hydrogen evolution in both acidic and alkaline solutions[J].Chemical Engineering Journal,2021,409:128158.

    • [18] HE Man,CHEN Hao,PENG Hao,et al.Ultralight Ti3C2Tx-derivative chrysanthemum-like Na2Ti3O7/Ti3C2Tx MXene quantum dots 3D/0D heterostructure with advanced microwave absorption performance[J].Chemical Engineering Journal,2023,456:140985.

    • [19] XU Deying,KANG Zhaoming,ZHAO Hongbin,et al.Coupling heterostructured CoP-NiCoP nanopin arrays with MXene(Ti3C2Tx)as an efficient bifunctional electrocatalyst for overall water splitting[J].Journal of Colloid and Interface Science,2023,639:223-232.