en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李忠涛(1983-)男,教授,博士,研究方向为储能材料和纳米复合材料。E-mail: liztao@upc.edu.cn。

通信作者:

王艺谋(1997-)女,博士研究生,研究方向为储能材料。E-mail: b22030035@s.upc.edu.cn。

中图分类号:TQ 050.4

文献标识码:A

文章编号:1673-5005(2025)05-0210-10

DOI:10.3969/j.issn.1673-5005.2025.05.021

参考文献 1
YANG M,MO Y.Interfacial defect of lithium metal in solid-state batteries[J].Angewandte Chemie International Edition,2021,60(39):21494-21501.
参考文献 2
XU P,SHUANG Z Y,ZHAO C Z,et al.A review of solid-state lithium metal batteries through in situ solidification[J].Science China Chemistry,2024,67(1):67-86.
参考文献 3
WU J,RAO Z,WANG H,et al.Order-structured solid-state electrolytes[J].SusMat,2022,2(6):660-678.
参考文献 4
MA M,ZHANG M,JIANG B,et al.A review of all-solid-state electrolytes for lithium batteries:high-voltage cathode materials,solid-state electrolytes and electrode-electrolyte interfaces[J].Materials Chemistry Frontiers,2023,7(7):1268-1297.
参考文献 5
LUO C,JI X,CHEN J,et al.Solid-state electrolyte anchored with a carboxylated azo compound for all-solid-state lithium batteries[J].Angewandte Chemie International Edition,2018,57(28):8567-8571.
参考文献 6
KIM Y,LI C,HUANG J,et al.Ionic covalent organic framework solid-state electrolytes[J].Advanced Materials,2024,36(40):2407761.
参考文献 7
CHEN N,ZHANG H,LI L,et al.Ionogel electrolytes for high-performance lithium batteries:a review[J].Advanced Energy Materials,2018,8(12):1702675.
参考文献 8
SHIN H,CHOI S J,CHOI S,et al.In situ gel electrolyte network guaranteeing ionic communication between solid electrolyte and cathode[J].Journal of Power Sources,2022,546:231926.
参考文献 9
GUO J,LIU X,CAO X,et al.In situ formed poly(ester-alt-acetal)electrolytes with high oxidation potential and electrode-electrolyte interface stability[J].ACS Energy Letters,2023,8(10):4218-4227.
参考文献 10
WU L W,HUANG M L,YANG Y X,et al.In-situ electrochemical surface-enhanced Raman spectroscopy in metal/polyelectrolyte interfaces[J].Chinese Journal of Catalysis,2022,43(11):2820-2825.
参考文献 11
WEN P,LIU Y,MAO J,et al.Tuning desolvation kinetics of in situ weakly solvating polyacetal electrolytes for dendrite-free lithium metal batteries[J].Journal of Energy Chemistry,2023,79:340-347.
参考文献 12
CHAI J,LIU Z,MA J,et al.In situ generation of poly(vinylene carbonate)based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J].Advanced Science,2017,4(2):1600377.
参考文献 13
YANG Y X,YANG X H,HUANG M L,et al.In situ spectroscopic elucidation of the electrochemical potential drop at polyelectrolytes/Au interfaces[J].The Journal of Physical Chemistry Letters,2024,15(3):701-706.
参考文献 14
ZHANG B H,WEN W X,WANG H Y,et al.In situ generated of hybrid interface in poly(1,3-dioxolane)quasi solid electrolyte and extended sulfone cosolvent for lithium-metal batteries[J].Chemical Engineering Journal,2023,472:144990.
参考文献 15
SONG Y,PARK S,LEE H,et al.Thin-film type in situ polymerized composite solid electrolyte for solid-state lithium metal batteries[J].Journal of Materials Chemistry A,2024,12(16):9594-9605.
参考文献 16
HUANG L,LIU Z,GAO G,et al.Enhanced CO2 electroreduction selectivity toward ethylene on pyrazolate-stabilized asymmetric Ni-Cu hybrid sites[J].Journal of the American Chemical Society,2023,145(48):26444-26451.
参考文献 17
ALONSO-DE-LINAJE V,MANGAYAYAM M C,TOBLER D J,et al.Enhanced sorption of perfluorooctane sulfonate and perfluorooctanoate by hydrotalcites[J].Environmental Technology & Innovation,2021,21:101231.
参考文献 18
PORZ L,SWAMY T,SHELDON B W,et al.Mechanism of lithium metal penetration through inorganic solid electrolytes[J].Advanced Energy Materials,2017,7(20):1701003.
参考文献 19
WANG Q,ZHAO C,WANG S,et al.Clarifying the relationship between the lithium deposition coverage and microstructure in lithium metal batteries[J].Journal of the American Chemical Society,2022,144(48):21961-21971.
参考文献 20
ASADUZZAMAN A,RICCARDI D,AFANEH A T,et al.Environmental mercury chemistry-In silico[J].Accounts of Chemical Research,2019,52(2):379-388.
参考文献 21
PAI Y,TSAI C,KAO C.Mixed-phase manganese dioxide and functionalized graphite supported platinum/manganese dioxide catalyst for light-driven photoelectrochemical cell[J].Journal of the Electrochemical Society,2014,161(10):H619-H626.
参考文献 22
LIU J,WU M,LI X,et al.Amide-Functional,Li3N/LiF-Rich Heterostructured Electrode Electrolyte Interphases for 4.6 V Li||LiCoO2 Batteries [J].Advanced Energy Materials,2023,13(15):2300084.
参考文献 23
RAMASAMY M,JUNG C-Y,YEON Y-B,et al.Electrochemical Atomic Layer Deposition of CuIn(1-x)GaxSe2 on Mo Substrate [J].Journal of The Electrochemical Society,2017,164(14):D1006.
参考文献 24
CHAE O B,LUCHT B L.Interfacial issues and modification of solid electrolyte interphase for Li metal anode in liquid and solid electrolytes[J].Advanced Energy Materials,2023,13(14):2203791.
参考文献 25
YANG T,ZHANG W,LOU J,et al.Stable LiF-rich electrode-electrolyte interface toward high-voltage and high-energy-density lithium metal solid batteries[J].Small,2023,19(24):2300494.
参考文献 26
LIANG J,LIANG L,ZENG B,et al.Fluorine-doped carbon support enables superfast oxygen reduction kinetics by breaking the scaling relationship[J].Angewandte Chemie International Edition,2024,63(47):e202412825.
参考文献 27
PAN Y Y,QIU C D,QIN S J,et al.In situ construction of a favorable cathode electrolyte interphase through a fluorosilane additive for high-performance Li-rich cathode materials[J].Rare Metals,2022,41(11):3630-3638.
参考文献 28
WANG L,GUO J,QI Q,et al.Revisiting dipole-induced fluorinated-anion decomposition reaction for promoting a LiF-rich interphase in lithium-metal batteries[J].Nano-Micro Letters,2025,17(1):111.
参考文献 29
WANG X,SONG Y,JIANG X,et al.Constructing interfacial nanolayer stabilizes 4.3 V high-voltage all-solid-state lithium batteries with PEO-based solid-state electrolyte[J].Advanced Functional Materials,2022,32(23):2113068.
参考文献 30
LIAO S,YANG Z,LIN J,et al.A hierarchical structure perovskite quantum dots film for laser-driven projection display[J].Advanced Functional Materials,2023,33(1):2210558.
参考文献 31
SUN R,GUO J,WU Q,et al.A multi-objective optimization-based layer-by-layer blade-coating approach for organic solar cells:rational control of vertical stratification for high performance(vol 12,pg 3118,2019)[J].Energy & Environmental Science,2020,13(1):317.
参考文献 32
LI H,REN B,LIU W,et al.Boron nanosheets induced microstructure and charge transfer tailoring in carbon nanofibrous mats towards highly efficient water splitting[J].Nano Energy,2021,88:106246.
参考文献 33
LIU Q,DAN Y,NIU Y,et al.A highly compatible deep eutectic solvent-based poly(ethylene)oxide polymer electrolyte to enable the stable operation of 4.5 V lithium metal batteries[J].Small,2025,21:2408944.
参考文献 34
HE C,YING H,CAI L,et al.Tailoring stable PEO-based electrolyte/electrodes interfaces via molecular coordination regulating enables 4.5 V solid-state lithium metal batteries[J].Advanced Functional Materials,2024,34(51):2410350.
参考文献 35
XU S,JIA Z,LAN D,et al.Synergistic polarization relaxation in heteroatom-optimized heterointerfaces for electromagnetic wave absorption[J].Advanced Functional Materials,2025,35(30):2500304.
参考文献 36
LU G,QIAO Q,ZHANG M,et al.High-voltage electrosynthesis of organic-inorganic hybrid with ultrahigh fluorine content toward fast Li-ion transport[J].Science Advances,2024,10(32).
参考文献 37
MALINKIEWICZ O,GRANCHA T,MOLINA-ONTORIA A,et al.Efficient,cyanine dye based bilayer solar cells[J].Advanced Energy Materials,2013,3(4):472-477.
目录contents

    摘要

    高压运行下传统凝胶电解质(GPEs)中的溶剂与阴离子易发生不可逆氧化分解,导致正极形成异质高阻抗正极电解质界面(CEI)膜并引发过渡金属溶出;其液态组分同时与锂金属剧烈反应,形成脆弱固体电解质界面(SEI)膜,加剧离子通量不均、枝晶生长和“死锂”堆积,显著提升短路风险并加速容量衰减。为此通过分子设计与界面协同调控策略,开发以聚乙二醇二丙烯酸酯(PEGDA)与丙烯酸2,2,2-三氟乙酯(TFEA)原位共聚为骨架、丁二腈(SN)为添加剂的复合凝胶电解质,并测试其性能。结果表明:TFEA中—CF3基团优先还原形成富含LiF的SEI层,其高离子选择性可均匀锂离子流,抑制枝晶并实现锂对称电池大于1300 h的稳定循环;在正极侧SN高压氧化分解生成高离子导Li3N,与TFEA氧化分解形成的LiF组分协同构筑稳定CEI层,共同抑制溶剂/锂盐分解及过渡金属溶出;电解质电化学稳定窗口被显著拓宽至4.8 V,组装的Li||LiNi0.8Co0.1Mn0.1O2电池在4.5 V下循环120圈后容量保持率高达75.23%(0.5 C)。

    Abstract

    Under high-voltage operation, the solvents and anions in traditional gel polymer electrolytes (GPEs) are prone to irreversible oxidative decomposition, leading to the formation of heterogeneous high-impedance cathode electrolyte interphase (CEI) film and the dissolution of transition metals. Meanwhile, the liquid components in the electrolyte react violently with the lithium metal to form a fragile solid electrolyte interphase (SEI) film. This exacerbates the uneven ion flux, dendrite growth, and accumulation of "dead lithium", significantly increasing the risk of short-circuiting and accelerating capacity fade. Therefore, a composite gel electrolyte was developed through molecular design and interfacial synergistic regulation strategies, using in-situ copolymerization of polyethylene glycol diacrylate (PEGDA) and 2,2,2-trifluoroethyl acrylate (TFEA) as the framework, and succinonitrile (SN) as an additive. The results show that the -CF3 groups in TFEA are preferentially reduced to form a LiF rich SEI layer, which has high ionic selectivity to homogenize the lithium-ion flux, inhibit dendrite formation, and achieve stable cycling of lithium symmetric cells for over 1300 h. On the cathode side, the high-voltage oxidative decomposition of SN generates highly ionic Li3N, which synergistically constructs a stable CEI layer with the LiF component formed by the oxidative decomposition of TFEA, jointly suppressing the decomposition of solvents/lithium salts and the dissolution of transition metals. The electrochemical stability window of the electrolyte is significantly extended to 4.8 V, and the assembled Li||LiNi0.8Co0.1Mn0.1O2 cell achieves a high capacity retention of 75.23% (at 0.5 C) after 120 cycles at 4.5 V.

    关键词

    锂电池凝胶电解质界面高压

  • 锂电池泄漏和漏电在内的安全问题严重阻碍了其进一步发展[1-3]。尽管固态电解质可以有效缓解上述问题,但是因为其离子电导率较低,并且与电极之间的界面接触不佳,限制了其实际应用[4-6]。准固态凝胶电解质(GPEs)结合了液态电解液以及固态电解质的优势,主要依靠小分子进行离子传输,在室温下其表现出更优的离子电导率以及界面相容性,在电池内部GPEs可以调节锂离子在界面上的均匀沉积,抑制电解液的分解,从而改善锂金属负极的稳定性[7-8]。GPEs内部包含的液态组分在高电压和活性锂金属负极环境下引发的复杂且不稳定的界面行为。在正极侧,当工作电压提升至4.3 V时,传统GPEs中的有机溶剂和锂盐容易发生不可逆的氧化分解。这些分解产物在正极材料表面形成不均匀、阻抗高的正极电解质界面膜(CEI),不仅无法有效保护界面,反而会催化持续的氧化反应,甚至导致过渡金属离子溶出,破坏正极结构稳定性[9-10]。在锂金属负极侧,液态组分与锂的高反应性导致固体电解质界面膜(SEI)始终处于动态重构中[11-13]。在高电流密度充放电或高压体系带来的强极化作用下,诱发了锂离子的非均匀沉积。这不仅进一步降低了SEI层的机械强度,为锂枝晶的成核与刺穿提供了可能性,还伴随着持续的界面副反应,造成活性锂和电解质的消耗以及“死锂”的累积,进而导致电池容量快速衰减和循环寿命缩短[14-15]。下一代GPEs的关键在于协同改善其在高压正极和锂金属负极环境下的界面兼容性与稳定性。笔者以聚乙二醇二丙烯酸酯(PEGDA)与丙烯酸2,2,2-三氟乙酯(TFEA)原位共聚作为骨架、丁二腈(SN)为添加剂的复合凝胶电解质以提高聚合物本体对负极侧的界面稳定性。

  • 1 电解质的制备与电池的组装

  • 1.1 试剂与仪器

  • 试剂:聚乙二醇二丙烯酸酯与丙烯酸2,2,2-三氟乙酯,上海麦克林生化科技有限公司;丁二腈,聚偏二氟乙烯与N-甲基吡咯烷酮,上海阿拉丁生化科技股份有限公司。

  • 仪器:电化学工作站CS350H,武汉科思特仪器股份有限公司;Land电池测试系统CT-2001A,武汉金诺电子有限公司;手套箱Lab2000,合肥科晶有限公司; 红外光谱仪VERTEX 80V,美国布鲁克公司;扫描电子显微镜S4800,日本日立;透射电子显微镜JEM-2100UHR,日本电子;X 射线光电子能谱仪Escalab250Xi,美国赛默飞世尔科技有限公司。

  • 1.2 原位凝胶电解质的制备

  • 前驱体溶液的制备流程如图1所示。取1 mol/L LiPF6 EC/DEC/EMC(体积比为1∶1∶1)电解液,加入质量分数为20%的聚合物单体(聚乙二醇二丙烯酸酯与丙烯酸2,2,2-三氟乙酯,质量比为xy),得到的凝胶电解质记为GEL-xy。然后加入质量分数分别为0.5%的偶氮二异丁腈(AIBN)及10%丁二腈,将混合液搅拌2 h,使其充分溶解,得到前驱体溶液。组装电池时,以PP隔膜作为基底,隔膜两侧各滴加30 μL的前驱体溶液,最后将组装好的电池置于65℃烘箱中加热15 h。

  • 图1 原位凝胶电解质的制备过程

  • Fig.1 Preparation process of in-situ gel electrolyte

  • 1.3 NCM811正极片制备

  • 将NCM811、导电炭黑、PVDF按照质量比为8∶1∶1加入到混料机中,再加入适量的N-甲基吡咯烷酮溶液,脱泡混合形成均匀浆料。用涂布机将浆料均匀延流在铜箔或者铝箔上,将其置于100℃真空烘箱中干燥12 h,然后通过对辊机将其压实,最后放在冲压机下冲出电极片。

  • 1.4 电池组装

  • 按照正极壳、正极极片、隔膜、负极材料、垫片、弹片、负极壳的顺序进行组装。组装完成后用封口机以50 MPa 的压力将电池封紧,每次组装工艺保持一致。正极为NCM811极片,活性物质载量约为1 mg/cm2,负极为直径16 mm,厚度为0.5 mm的锂片。

  • 2 结果与讨论

  • 2.1 结构和形貌表征

  • 红外表征结果(图2)证明原位电解质成功合成。图2中,1 720 cm-1处的峰属于PEGDA中的C C伸缩振动,而在GEL中不存在双键的振动峰,证明单体聚合完成[16]。在1 070 cm-1处为—CF3的振动峰,随着GEL中氟含量的增加,红外谱图中的振动峰强度逐渐增大,并且极性溶剂丁二腈的加入不会影响聚合过程[17]。聚合之后的电解质呈淡黄色固体(图2(c))。通过热重分析了不同氟含量凝胶聚合物电解质的热稳定性。热重曲线在约70℃处出现了明显的平台下降,可能是电解液中的溶剂蒸发所致,约200℃处的拐点可能是源于聚合物框架以及丁二腈的分解,350℃以后主要是隔膜以及锂盐分解。从图2(e)中看出,随着氟化单体含量的增加,凝胶电解质的热稳定性逐渐增强。GEL-13的初始分解温度可以达到330℃,这说明氟化聚合物框架具有很好的热稳定性。通过凝胶渗透色谱测试了GEL-13的相对分子质量及其分布(图2(f)),其数均相对分子质量为2100 g/mol,聚合物相对分子质量分布为1.41。

  • 图2 电解质结构和形貌表征结果

  • Fig.2 Characterization results of electrolyte structure and morphology

  • 通过扫描电子显微镜研究具有隔膜基底的聚合物的形貌(图2(b)),可以看出,原先的聚丙烯隔膜充满了孔洞。在吸附前驱体溶液之后,PEGDA与TFEA发生共聚后,膜变得致密平整,没有明显孔道。从EDS-mapping图中可以看出O、F、N元素在聚合物膜中均匀分布,表明酯基、腈基、三氟甲基在电解质膜上均匀分布(图2(d))。

  • 2.2 电化学性能

  • 组装锂对称电池,通过电解质的离子电导率确定2种双键单体的最佳比例(图3)。由图3(a)看出,GEL-13电解质(PEGDA与TFEA质量比为1∶3)具有最高的离子电导率,可以达到2.65×10-3 S/cm。同时又对SN的作用进行测试,使用不含SN的GEL-13电解质组装了对称电池,可以看到不含SN的GEL-13电解质电导率(2.58×10-3 S/cm)相较于GEL-13电解质发生了下降,说明SN的存在对于电导率的提升有着一定作用。

  • 图3 电解质的电化学性能

  • Fig.3 Electrochemical performance of electrolyte

  • 将对称电池在不同温度下的阻抗谱图,通过拟合温度依赖性的电荷转移阻抗获得了去溶剂化能,以比较不同体系下界面处离子扩散动力学(图3(d)),根据 VTF方程拟合结果,在GEL-13中锂离子的界面去溶剂化能为48.43 kJ/mol,低于液态电解液的59.37 kJ/mol,说明锂离子在GEL-13中的界面处锂离子更容易从溶剂分子包裹的溶剂化结构中脱离出来,这样既可以促进锂离子在界面处的均匀沉积,又可以减少界面处溶剂分子的还原。同时GEL-13的锂离子迁移数可以高达0.74,锂离子在电解质中的迁移效率更高,促进了锂离子在正负极之间的均匀传输(图3(c))。对电解质的电压窗口进行测试,液态电解液的电化学稳定窗口仅约为4.3 V。而得益于GEL-13电解质中聚合物上的—CF3官能团,GEL13电解质的电压窗口得以拓宽到4.8 V,远远大于LE电解质,说明GEL-13电解质的耐压稳定性更好,为高压电池的使用提供了可能性。

  • 2.3 负极界面稳定性

  • 为表征不同电解质对于锂离子在锂金属负极上沉积|剥离稳定性的影响,组装了锂对称电池在电流密度为0.5 mA/cm2,面沉积比容量为0.5 mA·h/cm2条件下进行循环测试,结果见图4。

  • 图4 电解质负极界面稳定性测试结果

  • Fig.4 Results of anode interface stability test of electrolyte

  • 由图4(a)看出,液态电解质对锂负极侧不稳定,250 h后过电位急剧增加。对循环后的锂片表面进行扫描电镜测试(图4(c)),可以看到使用LE电解液循环后的锂片表面出现10 μm的裂缝,并且出现厚度不均一的锂沉积。这是因为LE中形成的SEI层的强度难以承受锂沉积过程中锂负极的体积变化,SEI层的不断破裂与再生,导致枝晶与“死锂”的不断累积,形成了表面裂纹[18]。而使用GEL-13电解质循环后的锂片,其表面较为光滑平整,没有出现裂纹,表面沉积的锂也更加平坦(图4(b))。这说明GEL-13电解质具有很强的锂负极稳定性,可以在锂金属负极表面形成稳定的界面层,使得锂在循环过程中的沉积与剥离更加均匀[19]。因此GEL-13组装的锂对称电池可以稳定循环1 300 h,其过电位也只有0.05 V,远远小于LE。

  • 通过XPS研究在LE以及GEL-13中循环30圈后锂片表面SEI层的组成(图4(d)),可以看出,在使用LE电解质循环后锂片表面物质的C 1s谱图中,包含了大量的有机成分(C—O、C—C、CO32-)。说明在LE中溶剂分子在负极侧大量分解,形成了Li2CO3与烷基锂有机物为主的SEI层[20]。众所周知,这种SEI层中导电性差,且机械强度差,容易产生破裂,因此容易造成电解液中活性物质的不断消耗[21]。LE电解液中出现了LiF(684.8 eV)[22]的信号峰,通过P—F(688.8 eV)[23]键可以判定来源于PF6-的分解。虽然LiF由于其高的弹性模量与高的离子电导率是公认的对负极友好的SEI层组分,但是由于LE的SEI层中LiF的峰强度太弱,含量太少,不足以改变SEI层的特性。因而LE形成的这种Li2CO3与烷基锂有机物为主的SEI层,无法抵抗枝晶的生长,从而导致电池的性能下降[24]。而在GEL-13体系中,CO32-与碳氧有机物的峰面积明显小于LE的(图4(e)),说明GEL凝胶电解质有效抑制了部分溶剂分子的分解[25]。同时GEL-13电解质的SEI层中存在很强的C—F峰(689.1 eV)[26]、LixPOyFz峰(687.1 eV)[27]与LiF(684.8 eV)[22]峰,说明GEL-13电解质中的SEI层含有大量的LiF,可以增强SEI层的机械强度与电导率,促进界面处锂的均匀沉积。其中聚合物骨架上的—CF3的分解是SEI层中LiF的重要来源。进一步通过分子轨道能级的密度泛函理论(DFT)计算了GEL-13电解质中聚合物和溶剂分子的能级来解释SEI层的形成,如图4(h)所示。可以看出,TFEA比其他溶剂占据更低的未占分子轨道(LUMO),表明TFEA首先与锂阳极发生反应,生成LiF的SEI层,这与XPS的结果一致。因此GEL-13电解质有助于形成的富含大量LiF的SEI层,理论上具有很强的机械强度,可以抑制枝晶生长,防止“死锂”形成[28]

  • 2.4 电池性能测试

  • 以LE、GEL-13为电解质组装Li||LiNi0.8Co0.1Mn0.1O2电池,在0.5 C的电流密度下(1 C=180 mA·h/g)进行充放电循环测试(前3圈在0.1 C的小电流密度下进行活化),结果见图5(a)。可以发现在GEL-13电解质组装的电池在4.3V下可以稳定循环330圈,容量保持率为94.36%,几乎没有容量衰减。而在LE中,电池容量随着循环逐渐衰减,在第137圈时容量保持率只有75.7%。图5(b)是GEL-13电解质体系下循环10圈、50圈、100圈时的电压-比容量曲线,可以看出,GEL-13体系下电池循环期间表现出稳定的电压平台且容量几乎没有衰减。

  • 为了进一步证明凝胶电解质的高压稳定性,组装Li||LiNi0.8Co0.1Mn0.1O2电池,在0.5 C 的电流密度下(1 C = 180 mA·h/g)进行充放电循环测试,充放电区间为2.8~4.5 V,结果见图5。由图5(c)看出,GEL-13电解质的电池循环稳定性最好,120圈之后容量可以保持75.23%。同时GEL-13电解质具有最高的比容量和放电电压(图5(d))。从表1中可以看出,GEL-13电解质与LiNi0.8Co0.1Mn0.1O2阴极组装电池的循环性能优于很多其他电解质。

  • 表1 与其他高压电解质的循环性能对比

  • Table1 Cycle performance comparison with other high-voltage electrolytes

  • 2.5 正极界面稳定性

  • 为进一步研究凝胶电解质对正极界面处的作用,对使用GEL-13电解质在4.5 V下循环30次之后的LiNi0.8Co0.1Mn0.1O2颗粒进行SEM和TEM测试。结果见图6。由图6(a)看出,在GEL-13电解质中循环后的LiNi0.8Co0.1Mn0.1O2颗粒,其表面光滑,没有出现裂纹,说明GEL-13电解质很好地保护了LiNi0.8Co0.1Mn0.1O2颗粒。从图6(b)看出其CEI层的厚度只有约15 nm。总的来说,GEL-13电解质可以形成一层薄且均匀稳定的CEI层,可以有效地保护阴极,阻止LiNi0.8Co0.1Mn0.1O2颗粒的破裂。

  • 图5 电池性能测试结果

  • Fig.5 Results of battery performance testing

  • 通过XPS进一步研究循环后电极片表面元素组成的变化。在对C 1s图谱中出现了较弱的C—F(290.4 eV)、C—O(286.9 eV)与C—C(284.8 eV)峰[27],可能是因为部分溶剂与聚合物骨架的分解,在电极表面形成了少量烷基碳酸锂[2535]。对F与N元素的谱图进行观测来探究聚合物骨架与SN的作用。在F1s谱图中发现了—CF与LiF的明显的强峰(图6(e))。根据图4(h)计算的HOMO能级可以看出,PEGDA与TFEA单体占据更高的HOMO能级,会在阴极侧更优先分解。与F1s图谱中的结果一致,凝胶电解质中的聚合物框架上的—CF3会分解生成含大量LiF的CEI层[36]。此外在N 1s谱图中还明显观察到氮化物峰的存在,这与凝胶电解质中SN的添加有关,说明SN在高压下也会在阴极表面分解,参与正极界面层的形成,在高压下分解形成具有保护性的碳氮物质以及Li3N[37]。总之GEL-13电解质可以形成富含Li3N与LiF的坚固且薄的CEI层,减少了活性物质在阴极的消耗,阻止了阴极侧颗粒的破碎。

  • 图6 正极界面稳定性测试结果

  • Fig.6 Results of cathode interface stability test

  • 3 结论

  • (1)TFEA中—CF3基团优先还原形成富含LiF的SEI层,其高离子选择性可均匀锂离子流,抑制枝晶并实现锂对称电池大于1300 h的稳定循环。

  • (2)额外引入丁二腈添加剂,不仅改善了凝胶电解质的离子电导率,并且其可以优先吸附在三元正极材料表面,既可以抑制过渡金属离子溶出,又可以利用腈基的高压特性,避免电解质的进一步分解,电池在4.5 V下也可以稳定循环120圈。

  • (3)电解质电化学稳定窗口被显著拓宽至4.8 V,组装的Li||LiNi0.8Co0.1Mn0.1O2电池在4.5 V下循环120圈后容量保持率高达75.23%(0.5 C)。

  • 参考文献

    • [1] YANG M,MO Y.Interfacial defect of lithium metal in solid-state batteries[J].Angewandte Chemie International Edition,2021,60(39):21494-21501.

    • [2] XU P,SHUANG Z Y,ZHAO C Z,et al.A review of solid-state lithium metal batteries through in situ solidification[J].Science China Chemistry,2024,67(1):67-86.

    • [3] WU J,RAO Z,WANG H,et al.Order-structured solid-state electrolytes[J].SusMat,2022,2(6):660-678.

    • [4] MA M,ZHANG M,JIANG B,et al.A review of all-solid-state electrolytes for lithium batteries:high-voltage cathode materials,solid-state electrolytes and electrode-electrolyte interfaces[J].Materials Chemistry Frontiers,2023,7(7):1268-1297.

    • [5] LUO C,JI X,CHEN J,et al.Solid-state electrolyte anchored with a carboxylated azo compound for all-solid-state lithium batteries[J].Angewandte Chemie International Edition,2018,57(28):8567-8571.

    • [6] KIM Y,LI C,HUANG J,et al.Ionic covalent organic framework solid-state electrolytes[J].Advanced Materials,2024,36(40):2407761.

    • [7] CHEN N,ZHANG H,LI L,et al.Ionogel electrolytes for high-performance lithium batteries:a review[J].Advanced Energy Materials,2018,8(12):1702675.

    • [8] SHIN H,CHOI S J,CHOI S,et al.In situ gel electrolyte network guaranteeing ionic communication between solid electrolyte and cathode[J].Journal of Power Sources,2022,546:231926.

    • [9] GUO J,LIU X,CAO X,et al.In situ formed poly(ester-alt-acetal)electrolytes with high oxidation potential and electrode-electrolyte interface stability[J].ACS Energy Letters,2023,8(10):4218-4227.

    • [10] WU L W,HUANG M L,YANG Y X,et al.In-situ electrochemical surface-enhanced Raman spectroscopy in metal/polyelectrolyte interfaces[J].Chinese Journal of Catalysis,2022,43(11):2820-2825.

    • [11] WEN P,LIU Y,MAO J,et al.Tuning desolvation kinetics of in situ weakly solvating polyacetal electrolytes for dendrite-free lithium metal batteries[J].Journal of Energy Chemistry,2023,79:340-347.

    • [12] CHAI J,LIU Z,MA J,et al.In situ generation of poly(vinylene carbonate)based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J].Advanced Science,2017,4(2):1600377.

    • [13] YANG Y X,YANG X H,HUANG M L,et al.In situ spectroscopic elucidation of the electrochemical potential drop at polyelectrolytes/Au interfaces[J].The Journal of Physical Chemistry Letters,2024,15(3):701-706.

    • [14] ZHANG B H,WEN W X,WANG H Y,et al.In situ generated of hybrid interface in poly(1,3-dioxolane)quasi solid electrolyte and extended sulfone cosolvent for lithium-metal batteries[J].Chemical Engineering Journal,2023,472:144990.

    • [15] SONG Y,PARK S,LEE H,et al.Thin-film type in situ polymerized composite solid electrolyte for solid-state lithium metal batteries[J].Journal of Materials Chemistry A,2024,12(16):9594-9605.

    • [16] HUANG L,LIU Z,GAO G,et al.Enhanced CO2 electroreduction selectivity toward ethylene on pyrazolate-stabilized asymmetric Ni-Cu hybrid sites[J].Journal of the American Chemical Society,2023,145(48):26444-26451.

    • [17] ALONSO-DE-LINAJE V,MANGAYAYAM M C,TOBLER D J,et al.Enhanced sorption of perfluorooctane sulfonate and perfluorooctanoate by hydrotalcites[J].Environmental Technology & Innovation,2021,21:101231.

    • [18] PORZ L,SWAMY T,SHELDON B W,et al.Mechanism of lithium metal penetration through inorganic solid electrolytes[J].Advanced Energy Materials,2017,7(20):1701003.

    • [19] WANG Q,ZHAO C,WANG S,et al.Clarifying the relationship between the lithium deposition coverage and microstructure in lithium metal batteries[J].Journal of the American Chemical Society,2022,144(48):21961-21971.

    • [20] ASADUZZAMAN A,RICCARDI D,AFANEH A T,et al.Environmental mercury chemistry-In silico[J].Accounts of Chemical Research,2019,52(2):379-388.

    • [21] PAI Y,TSAI C,KAO C.Mixed-phase manganese dioxide and functionalized graphite supported platinum/manganese dioxide catalyst for light-driven photoelectrochemical cell[J].Journal of the Electrochemical Society,2014,161(10):H619-H626.

    • [22] LIU J,WU M,LI X,et al.Amide-Functional,Li3N/LiF-Rich Heterostructured Electrode Electrolyte Interphases for 4.6 V Li||LiCoO2 Batteries [J].Advanced Energy Materials,2023,13(15):2300084.

    • [23] RAMASAMY M,JUNG C-Y,YEON Y-B,et al.Electrochemical Atomic Layer Deposition of CuIn(1-x)GaxSe2 on Mo Substrate [J].Journal of The Electrochemical Society,2017,164(14):D1006.

    • [24] CHAE O B,LUCHT B L.Interfacial issues and modification of solid electrolyte interphase for Li metal anode in liquid and solid electrolytes[J].Advanced Energy Materials,2023,13(14):2203791.

    • [25] YANG T,ZHANG W,LOU J,et al.Stable LiF-rich electrode-electrolyte interface toward high-voltage and high-energy-density lithium metal solid batteries[J].Small,2023,19(24):2300494.

    • [26] LIANG J,LIANG L,ZENG B,et al.Fluorine-doped carbon support enables superfast oxygen reduction kinetics by breaking the scaling relationship[J].Angewandte Chemie International Edition,2024,63(47):e202412825.

    • [27] PAN Y Y,QIU C D,QIN S J,et al.In situ construction of a favorable cathode electrolyte interphase through a fluorosilane additive for high-performance Li-rich cathode materials[J].Rare Metals,2022,41(11):3630-3638.

    • [28] WANG L,GUO J,QI Q,et al.Revisiting dipole-induced fluorinated-anion decomposition reaction for promoting a LiF-rich interphase in lithium-metal batteries[J].Nano-Micro Letters,2025,17(1):111.

    • [29] WANG X,SONG Y,JIANG X,et al.Constructing interfacial nanolayer stabilizes 4.3 V high-voltage all-solid-state lithium batteries with PEO-based solid-state electrolyte[J].Advanced Functional Materials,2022,32(23):2113068.

    • [30] LIAO S,YANG Z,LIN J,et al.A hierarchical structure perovskite quantum dots film for laser-driven projection display[J].Advanced Functional Materials,2023,33(1):2210558.

    • [31] SUN R,GUO J,WU Q,et al.A multi-objective optimization-based layer-by-layer blade-coating approach for organic solar cells:rational control of vertical stratification for high performance(vol 12,pg 3118,2019)[J].Energy & Environmental Science,2020,13(1):317.

    • [32] LI H,REN B,LIU W,et al.Boron nanosheets induced microstructure and charge transfer tailoring in carbon nanofibrous mats towards highly efficient water splitting[J].Nano Energy,2021,88:106246.

    • [33] LIU Q,DAN Y,NIU Y,et al.A highly compatible deep eutectic solvent-based poly(ethylene)oxide polymer electrolyte to enable the stable operation of 4.5 V lithium metal batteries[J].Small,2025,21:2408944.

    • [34] HE C,YING H,CAI L,et al.Tailoring stable PEO-based electrolyte/electrodes interfaces via molecular coordination regulating enables 4.5 V solid-state lithium metal batteries[J].Advanced Functional Materials,2024,34(51):2410350.

    • [35] XU S,JIA Z,LAN D,et al.Synergistic polarization relaxation in heteroatom-optimized heterointerfaces for electromagnetic wave absorption[J].Advanced Functional Materials,2025,35(30):2500304.

    • [36] LU G,QIAO Q,ZHANG M,et al.High-voltage electrosynthesis of organic-inorganic hybrid with ultrahigh fluorine content toward fast Li-ion transport[J].Science Advances,2024,10(32).

    • [37] MALINKIEWICZ O,GRANCHA T,MOLINA-ONTORIA A,et al.Efficient,cyanine dye based bilayer solar cells[J].Advanced Energy Materials,2013,3(4):472-477.

  • 参考文献

    • [1] YANG M,MO Y.Interfacial defect of lithium metal in solid-state batteries[J].Angewandte Chemie International Edition,2021,60(39):21494-21501.

    • [2] XU P,SHUANG Z Y,ZHAO C Z,et al.A review of solid-state lithium metal batteries through in situ solidification[J].Science China Chemistry,2024,67(1):67-86.

    • [3] WU J,RAO Z,WANG H,et al.Order-structured solid-state electrolytes[J].SusMat,2022,2(6):660-678.

    • [4] MA M,ZHANG M,JIANG B,et al.A review of all-solid-state electrolytes for lithium batteries:high-voltage cathode materials,solid-state electrolytes and electrode-electrolyte interfaces[J].Materials Chemistry Frontiers,2023,7(7):1268-1297.

    • [5] LUO C,JI X,CHEN J,et al.Solid-state electrolyte anchored with a carboxylated azo compound for all-solid-state lithium batteries[J].Angewandte Chemie International Edition,2018,57(28):8567-8571.

    • [6] KIM Y,LI C,HUANG J,et al.Ionic covalent organic framework solid-state electrolytes[J].Advanced Materials,2024,36(40):2407761.

    • [7] CHEN N,ZHANG H,LI L,et al.Ionogel electrolytes for high-performance lithium batteries:a review[J].Advanced Energy Materials,2018,8(12):1702675.

    • [8] SHIN H,CHOI S J,CHOI S,et al.In situ gel electrolyte network guaranteeing ionic communication between solid electrolyte and cathode[J].Journal of Power Sources,2022,546:231926.

    • [9] GUO J,LIU X,CAO X,et al.In situ formed poly(ester-alt-acetal)electrolytes with high oxidation potential and electrode-electrolyte interface stability[J].ACS Energy Letters,2023,8(10):4218-4227.

    • [10] WU L W,HUANG M L,YANG Y X,et al.In-situ electrochemical surface-enhanced Raman spectroscopy in metal/polyelectrolyte interfaces[J].Chinese Journal of Catalysis,2022,43(11):2820-2825.

    • [11] WEN P,LIU Y,MAO J,et al.Tuning desolvation kinetics of in situ weakly solvating polyacetal electrolytes for dendrite-free lithium metal batteries[J].Journal of Energy Chemistry,2023,79:340-347.

    • [12] CHAI J,LIU Z,MA J,et al.In situ generation of poly(vinylene carbonate)based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J].Advanced Science,2017,4(2):1600377.

    • [13] YANG Y X,YANG X H,HUANG M L,et al.In situ spectroscopic elucidation of the electrochemical potential drop at polyelectrolytes/Au interfaces[J].The Journal of Physical Chemistry Letters,2024,15(3):701-706.

    • [14] ZHANG B H,WEN W X,WANG H Y,et al.In situ generated of hybrid interface in poly(1,3-dioxolane)quasi solid electrolyte and extended sulfone cosolvent for lithium-metal batteries[J].Chemical Engineering Journal,2023,472:144990.

    • [15] SONG Y,PARK S,LEE H,et al.Thin-film type in situ polymerized composite solid electrolyte for solid-state lithium metal batteries[J].Journal of Materials Chemistry A,2024,12(16):9594-9605.

    • [16] HUANG L,LIU Z,GAO G,et al.Enhanced CO2 electroreduction selectivity toward ethylene on pyrazolate-stabilized asymmetric Ni-Cu hybrid sites[J].Journal of the American Chemical Society,2023,145(48):26444-26451.

    • [17] ALONSO-DE-LINAJE V,MANGAYAYAM M C,TOBLER D J,et al.Enhanced sorption of perfluorooctane sulfonate and perfluorooctanoate by hydrotalcites[J].Environmental Technology & Innovation,2021,21:101231.

    • [18] PORZ L,SWAMY T,SHELDON B W,et al.Mechanism of lithium metal penetration through inorganic solid electrolytes[J].Advanced Energy Materials,2017,7(20):1701003.

    • [19] WANG Q,ZHAO C,WANG S,et al.Clarifying the relationship between the lithium deposition coverage and microstructure in lithium metal batteries[J].Journal of the American Chemical Society,2022,144(48):21961-21971.

    • [20] ASADUZZAMAN A,RICCARDI D,AFANEH A T,et al.Environmental mercury chemistry-In silico[J].Accounts of Chemical Research,2019,52(2):379-388.

    • [21] PAI Y,TSAI C,KAO C.Mixed-phase manganese dioxide and functionalized graphite supported platinum/manganese dioxide catalyst for light-driven photoelectrochemical cell[J].Journal of the Electrochemical Society,2014,161(10):H619-H626.

    • [22] LIU J,WU M,LI X,et al.Amide-Functional,Li3N/LiF-Rich Heterostructured Electrode Electrolyte Interphases for 4.6 V Li||LiCoO2 Batteries [J].Advanced Energy Materials,2023,13(15):2300084.

    • [23] RAMASAMY M,JUNG C-Y,YEON Y-B,et al.Electrochemical Atomic Layer Deposition of CuIn(1-x)GaxSe2 on Mo Substrate [J].Journal of The Electrochemical Society,2017,164(14):D1006.

    • [24] CHAE O B,LUCHT B L.Interfacial issues and modification of solid electrolyte interphase for Li metal anode in liquid and solid electrolytes[J].Advanced Energy Materials,2023,13(14):2203791.

    • [25] YANG T,ZHANG W,LOU J,et al.Stable LiF-rich electrode-electrolyte interface toward high-voltage and high-energy-density lithium metal solid batteries[J].Small,2023,19(24):2300494.

    • [26] LIANG J,LIANG L,ZENG B,et al.Fluorine-doped carbon support enables superfast oxygen reduction kinetics by breaking the scaling relationship[J].Angewandte Chemie International Edition,2024,63(47):e202412825.

    • [27] PAN Y Y,QIU C D,QIN S J,et al.In situ construction of a favorable cathode electrolyte interphase through a fluorosilane additive for high-performance Li-rich cathode materials[J].Rare Metals,2022,41(11):3630-3638.

    • [28] WANG L,GUO J,QI Q,et al.Revisiting dipole-induced fluorinated-anion decomposition reaction for promoting a LiF-rich interphase in lithium-metal batteries[J].Nano-Micro Letters,2025,17(1):111.

    • [29] WANG X,SONG Y,JIANG X,et al.Constructing interfacial nanolayer stabilizes 4.3 V high-voltage all-solid-state lithium batteries with PEO-based solid-state electrolyte[J].Advanced Functional Materials,2022,32(23):2113068.

    • [30] LIAO S,YANG Z,LIN J,et al.A hierarchical structure perovskite quantum dots film for laser-driven projection display[J].Advanced Functional Materials,2023,33(1):2210558.

    • [31] SUN R,GUO J,WU Q,et al.A multi-objective optimization-based layer-by-layer blade-coating approach for organic solar cells:rational control of vertical stratification for high performance(vol 12,pg 3118,2019)[J].Energy & Environmental Science,2020,13(1):317.

    • [32] LI H,REN B,LIU W,et al.Boron nanosheets induced microstructure and charge transfer tailoring in carbon nanofibrous mats towards highly efficient water splitting[J].Nano Energy,2021,88:106246.

    • [33] LIU Q,DAN Y,NIU Y,et al.A highly compatible deep eutectic solvent-based poly(ethylene)oxide polymer electrolyte to enable the stable operation of 4.5 V lithium metal batteries[J].Small,2025,21:2408944.

    • [34] HE C,YING H,CAI L,et al.Tailoring stable PEO-based electrolyte/electrodes interfaces via molecular coordination regulating enables 4.5 V solid-state lithium metal batteries[J].Advanced Functional Materials,2024,34(51):2410350.

    • [35] XU S,JIA Z,LAN D,et al.Synergistic polarization relaxation in heteroatom-optimized heterointerfaces for electromagnetic wave absorption[J].Advanced Functional Materials,2025,35(30):2500304.

    • [36] LU G,QIAO Q,ZHANG M,et al.High-voltage electrosynthesis of organic-inorganic hybrid with ultrahigh fluorine content toward fast Li-ion transport[J].Science Advances,2024,10(32).

    • [37] MALINKIEWICZ O,GRANCHA T,MOLINA-ONTORIA A,et al.Efficient,cyanine dye based bilayer solar cells[J].Advanced Energy Materials,2013,3(4):472-477.