en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

许伟伟(1984-),女,副教授,博士,研究方向为多相流分离机制。E-mail: xuweiwei@upc.edu.cn。

通信作者:

许伟伟(1984-),女,副教授,博士,研究方向为多相流分离机制。E-mail: xuweiwei@upc.edu.cn。

中图分类号:TE 868

文献标识码:A

文章编号:1673-5005(2025)05-0146-10

DOI:10.3969/j.issn.1673-5005.2025.05.014

参考文献 1
YUDISTIRA H T,NGUYEN V D,DUTTA P,et al.Flight behavior of charged droplets in electrohydrodynamic inkjet printing[J].Applied Physics Letters,2010,96(2):023503.
参考文献 2
JAWOREK A.Micro-and nanoparticle production by electrospraying[J].Powder Technology,2007,176(1):18-35.
参考文献 3
YOSHIMOTO H,SHIN Y M,TERAI H,et al.A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering[J].Biomaterials,2003,24(12):2077-2082.
参考文献 4
KWON S,MOON H,KIM C J.Creating,transporting,cutting,and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits[J].Journal of Microelectromechanical Systems,2003,12(1):70-80.
参考文献 5
孙治谦,金有海,王振波.高压脉冲静电破乳过程水滴的破碎临界电场参数[J].中国石油大学学报(自然科学版),2013,37(1):134-138.SUN Zhiqian,JIN Youhai,WANG Zhenbo.Critical electric field parameters of water droplet broken-up in high voltage impulse electrostatic demulsification process[J].Journal of China University of Petroleum(Edition of Natural Science),2013,37(1):134-138.
参考文献 6
何利民,杨东海,罗小明,等.新型电聚结器结构参数对液滴聚结特性的影响[J].中国石油大学学报(自然科学版),2011,35(6):105-111.HE Limin,YANG Donghai,LUO Xiaoming,et al.Effects of structural parameters of new electrostatic coalescer on coalescence characteristics of water droplet[J].Journal of China University of Petroleum(Edition of Natural Science),2011,35(6):105-111.
参考文献 7
owe BERG T G,FERNISH G C,GAUKLER T A.The mechanism of coalescence of liquid drops[J].Journal of the Atmospheric Sciences,1963,20(2):153-158.
参考文献 8
龚翔.电场作用下液滴的聚结特性及高压静电破乳研究[D].厦门:集美大学,2015.GONG Xiang.Study on the coalescence characteristics of droplets under electric field and high-voltage electrostatic demulsification[D].Xiamen:Jimei University,2015.
参考文献 9
ROY S,ANAND V,THAOKAR R M.Breakup and non-coalescence mechanism of aqueous droplets suspended in castor oil under electric field[J].Journal of Fluid Mechanics,2019,878:820-833.
参考文献 10
HUANG X,HE L,LUO X,et al.Deformation and coalescence of water droplets in viscous fluid under a direct current electric field[J].International Journal of Multiphase Flow,2019,118:1-9.
参考文献 11
任瑞娟.高压电场下W/O乳状液液滴-液滴、液滴-界面聚并行为研究[D].青岛:中国石油大学(华东),2018.REN Ruijuan.Study on the coalescence behavior of droplet-droplet and droplet-interface in W/O emulsion under high-voltage electric field[D].Qingdao:China University of Petroleum(East China),2018.
参考文献 12
LI S,CHEN R,WANG H,et al.Numerical investigation of the moving liquid column coalescing with a droplet in triangular microchannels using CLSVOF method[J].Science Bulletin,2015,60(22):1911-1926.
参考文献 13
TANGUY S,BERLEMONT A.Application of a level set method for simulation of droplet collisions[J].International Journal of Multiphase Flow,2005,31(9):1015-1035.
参考文献 14
XU Y,YANG G,HU D.An incompressible smoothed particle hydrodynamics-finite volume method coupling algorithm for interface tracking of two-phase fluid flows[J].International Journal for Numerical Methods in Fluids,2022,94(9):1434-1464.
参考文献 15
MOLTENI D,VITANZA E,BATTAGLIA O R.Smoothed particles hydrodynamics numerical simulations of droplets walking on viscous vibrating liquid[J].Computers & Fluids,2017,156:449-455.
参考文献 16
XING L,LI J,JIANG M,et al.Flow field analysis and performance evaluation of a hydrocyclone coalescer[J].Separation Science and Technology,2022,57(18):3035-3052.
参考文献 17
SAGHATCHI R,RAHMAT A,YILDIZ M.Electrohydrodynamics of a droplet in a highly confined domain:a numerical study[J].Physics of Fluids,2020,32(12):123305.
参考文献 18
LIU H,CHEN F,WANG P,et al.Simulating electrohydrodynamics with smoothed particle hydrodynamics based on a charge-conservative approach[J].Engineering Analysis with Boundary Elements,2021,124:41-51.
参考文献 19
李增亮,王乐峰,董祥伟,等.基于无网格法的浮体与波浪相互作用模拟与试验验证[J].中国石油大学学报(自然科学版),2020,44(2):108-116.LI Zengliang,WANG Lefeng,DONG Xiangwei,et al.Simulation and experimental validation of wave-floating body interaction based on meshless method[J].Journal of China University of Petroleum(Edition of Natural Science),2020,44(2):108-116.
参考文献 20
MACIÁ F,ANTUONO M,GONZÁLEZ L M,et al.Theoretical analysis of the no-slip boundary condition enforcement in SPH methods[J].Progress of Theoretical Physics,2011,125(6):1091-1121.
参考文献 21
DI MASCIO A,MARRONE S,COLAGROSSI A,et al.SPH-FV coupling algorithm for solving multi-scale three-dimensional free-surface flows[J].Applied Ocean Research,2021,115:102846.
参考文献 22
WANG C,YE G,MENG X,et al.A eulerian-Lagrangian coupled method for the simulation of submerged granular column collapse[J].Journal of Marine Science and Engineering,2021,9(6):617.
参考文献 23
XU Y,YANG G,ZHU Y,et al.A coupled SPH-FVM method for simulating incompressible interfacial flows with large density difference[J].Engineering Analysis with Boundary Elements,2021,128:227-243.
参考文献 24
BRACKBILL J U,KOTHE D B,ZEMACH C.A continuum method for modeling surface tension[J].Journal of Computational Physics,1992,100(2):335-354.
参考文献 25
HUA J,LIM L K,WANG C H.Numerical simulation of deformation/motion of a drop suspended in viscous liquids under influence of steady electric fields[J].Physics of Fluids,2008,20(11):113302.
参考文献 26
ZHU G X,ZOU L,CHEN Z,et al.An improved SPH model for multiphase flows with large density ratios[J].International Journal for Numerical Methods in Fluids,2018,86(2):167-184.
参考文献 27
SHEPARD D.A two-dimensional interpolation function for irregularly-spaced data:Proceedings of the 1968 23rd ACM National Conference[C].New York:Association for Computing Machinery,1968:517-524.
参考文献 28
HU X Y,ADAMS N A.A multi-phase SPH method for macroscopic and mesoscopic flows[J].Journal of Computational Physics,2006,213(2):844-861.
参考文献 29
MONAGHAN J J,GINGOLD R A.Shock simulation by the particle method SPH[J].Journal of Computational Physics,1983,52(2):374-389.
参考文献 30
ZHANG A,SUN P,MING F.An SPH modeling of bubble rising and coalescing in three dimensions[J].Computer Methods in Applied Mechanics and Engineering,2015,294:189-209.
参考文献 31
COLAGROSSI A,LANDRINI M.Numerical simulation of interfacial flows by smoothed particle hydrodynamics[J].Journal of Computational Physics,2003,191(2):448-475.
参考文献 32
HUANG X,HE L,LUO X,et al.Convergence effect of droplet coalescence under AC and pulsed DC electric fields[J].International Journal of Multiphase Flow,2021,143:103776.
目录contents

    摘要

    在外加电场作用下油中悬浮液滴会发生剧烈的极化变形,此时有网格方法难以捕捉液滴界面的局部细节,而无网格粒子方法在液滴界面的捕获方面具有优势。建立光滑粒子流体动力学(SPH)和有限容积法(FVM)耦合模型,采用FVM求解节点电场力并传递给SPH粒子,使用SPH方法计算受力和更新粒子的位置信息,通过电场和流场的耦合提高界面捕捉和数值模拟精度,并将数值结果与已发表的试验数据进行比较和验证;在此基础上研究矩形波电场下液滴聚并行为,体现液滴聚并的界面演变过程并分析界面张力的变化规律。结果表明,在矩形波电场下两液滴以振荡的形式不断靠近,界面张力在液滴对靠近过程中起到阻碍作用,而在液滴对融合过程中起促进作用。

    Abstract

    Suspended droplets in oil experience pronounced polarization and deformation under the influence of an external electric field. Traditional grid-based methods face limitations in capturing the intricate local features of the droplet interface, while gridless particle methods offer advantages with respect to capturing the droplet interface. The present study establishes a coupled model, consisting of smoothed particle hydrodynamics (SPH) and finite volume method (FVM). The nodal electric field force was solved using the FVM and transferred to SPH particles. Thereafter, the SPH method calculates the forces and updates the position information of particle. The coupling of the electric field and flow field enhances the precision of interface capture and numerical simulation. The numerical findings were compared and validated using published experimental data. Based on this, the study examines the aggregation behavior of droplets under a rectangular wave electric field, illustrating the process of droplet aggregation and analyzing the variation of interfacial tension. The results show that two droplets approach each other in an oscillating manner under a rectangular wave electric field, with interfacial tension hindering droplet approach and promoting the fusion process.

  • 电场引起的流体运动被称为电流体动力学(EHD),其广泛存在于各种实际应用,如喷墨打印[1]、电喷雾[2]、静电纺丝[3]和微流控技术[4]。电场下液滴-液滴聚并行为作为电流体动力学中一种典型的物理现象[5-6],具有重要的研究意义。油中液滴-液滴聚并过程包含了界面融合现象,理论分析难以开展研究,因此试验和数值模拟被广泛采用。对于试验研究,Berg等[7]发现直流电场下两液滴的聚并速率与低电场强度成正比,与高电场强度的平方成正比。龚翔[8]研究了直流电场下连续相油中两液滴的聚并特性,发现电场强度越高、液滴粒径越大,液滴间的相对运动速度越快,聚并时间越短。而在数值模拟方面,目前已发展了如边界积分法、流体体积法、水平集法和相场法。Roy等[9]采用边界积分法揭示了电场作用下两个液滴接触后反弹的物理机制,即当电场强度过高时,液滴界面的麦克斯韦应力拉动液滴,促使液桥压力升高,流体从液桥流向液滴内部,液滴发生反弹。Huang等[10]提出耦合水平集和流体体积法来捕获液滴界面,研究了直流电场下黏性介质中两液滴的聚并行为,发现液桥的生长受到界面张力和连续相黏度的控制。任瑞娟[11]基于相场方法模拟了交流电场下两液滴的聚并行为,发现增大电场强度,减小两液滴夹角、界面张力和连续相黏度,有利于减小两液滴聚并总时间。实现液滴聚并问题可选择的方法很多,基于网格的方法中,界面追踪VOF方法通过求解体积分数输运函数重建相界面,能够精准捕捉界面的细节,但是很难准确计算相界面曲率相关的物理量[12]。在水平集方法中采用一个连续函数描述相界面,可以准确处理体积、质量和物质的连续性,但是在界面重构方面存在局限性,导致界面出现模糊等情况[13]。Marker-and-Cell方法(MAC)通过标记点捕获连续的相界面,然而当界面发生变形时,点分布会不均匀,需要浪费时间重新布置[14]。可以发现网格法操作麻烦且容易出现数值不稳定问题,而SPH-FVM耦合法可以很好地避免上述问题,而且兼并了无网格法和有限容积法的优点,SPH能够精准捕捉液滴界面,而FVM可以提供更好的界面重建,这有助于准确模拟液滴聚并,同时该耦合模型处理自由流体问题时具有较好的适应性,且计算精度高,操作更方便[15-16]。综上发现,虽然SPH作为一种典型的无网格方法已经被广泛应用于电流体动力学问题[17-18],但是该方法在施加边界条件方面存在缺陷[19-20]。为了充分发挥SPH 方法和网格方法各自的优势[21-23],既能精准捕获液滴聚并的界面细节,也能保证计算的稳定性和精度要求,笔者研究SPH和FVM耦合的方法模拟矩形波电场下液滴-液滴的聚并行为,分析液滴-液滴聚并过程的界面演变、流场和界面张力分布规律。

  • 1 理论与数值模型

  • 1.1 控制方程

  • 采用拉格朗日形式的纳维-斯托克斯方程作为两相流的控制方程,表面张力Fs根据连续表面力(CSF)模型[24]计算为

  • dρdt=-ρu,
    (1)
  • ρdudt=-p+Fv+Fs+Fe.
    (2)
  • 其中

  • Fv=η2u, Fs=-βκn^δ.

  • 式中,ρ为密度,kg/m3; u为速度; m/s; p为压力,Pa; t为时间,s; FvFsFe分别为黏性力、表面张力和电场力,N/kg; η为动力黏度系数,Pa·s;β为表面张力系数,N/m; κ为界面曲率,m-1; n^为单位法向矢量;δ为狄拉克函数。

  • 由于电导率较高,基于完美导电介质假设,电场控制方程[25]可表示为

  • (εE)=0.
    (3)
  • 式中,ε为介电常数,F/m;E为电场强度,V/m。

  • 假设液滴表面的动态电流很小,磁效应的影响可以忽略,则电场强度是无旋的(×E=0),且与电势关系可表示为

  • E=-Φ.
    (4)
  • 式中,Φ为电势,V。

  • 式(3)可以重新表示为

  • (εΦ)=0.
    (5)
  • 电场力Fe可以计算为

  • Fe=-12EEε.
    (6)
  • 采用弱可压缩SPH方法,因此状态方程[26]被用来估计流体压力p,表示为

  • p=c2ρ-ρ0
    (7)
  • 式中,c为人工声速,m/s,为了确保不可压缩流体的密度变化率在1%以内,人工声速至少是流场最大速度的10倍,即c≥10 umaxρ0为流体的初始密度,kg/m3

  • 1.2 数值方法

  • 通过Matlab自编程实现的SPH-FVM耦合方法的计算流程如图1所示。

  • (1)计算域初始化并生成FV网格。首先整个计算域被离散为SPH粒子,然后根据离散的SPH粒子位置生成结构化FV网格,FV网格内部节点与SPH粒子的位置相同。在数值模拟过程中SPH粒子位置是不断变化的,而FV网格是固定不动的。初始时刻流体的物理属性被赋予SPH粒子,而FV网格不具有任何物理属性。

  • 图1 自编程耦合算法流程

  • Fig.1 Flowchart of self-programmed coupling algorithm

  • (2)将SPH粒子的介电常数传递给FV网格。网格节点fij的介电常数是通过其支持域内SPH粒子以Shepard插值[27]的方式获得。两相界面的介电常数是不连续的,传递过程能够使界面网格节点的介电常数从一相平滑过渡到另一相,界面网格节点可以用一个数组进行标记,方便后续的计算处理。图1中公式①参数意义如下:ε为介电常数,SPHj为网格节点fij的邻近SPH粒子,WfijSPHj为核函数WrfijSPHjh的缩写,rfijSPHj=rfij-rSPHj,代表网格节点fij和粒子SPHj之间的距离,h为核函数光滑长度。

  • (3)FVM计算电场力。电场控制方程(式(5))的求解需要施加Dirichlet(Φ为常数)和Neumann(Φn^=0)边界条件,因此边界条件的准确性直接影响数值解的精度;FVM的边界条件相比于SPH方法的边界条件更加简单、准确,因此FVM被用于求解电场控制方程。离散后的电场控制方程用双共轭梯度法进行迭代求解获得电势分布;然后根据式(4),用中心差分法求解电场分布;最后用式(6)求解界面网格节点的电场力。图1中FVM求解电场控制方程中参数的意义表示如下:nsew为网格fij界面,NSEW为网格节点fij相邻节点,δx′、δy′、Δx′、Δy′在本文中的数值是相同的。

  • (4)将界面网格节点的电场力传递给SPH粒子。当两相界面的介电常数相差很大时,电场力将沿着界面急剧变化,由于Shepard插值方法[27]具有平滑作用,直接用Shepard插值方法传递电场力会导致电场力梯度变缓,难以保证两相界面的SPH粒子获得准确的电场力分布。基于此提出了采用粒子分裂插值方法传递电场力,粒子分裂插值方法示意图如图2所示。首先将粒子i分裂为100个均匀分布的子粒子,单个子粒子的体积是粒子i体积的1/100;然后根据子粒子所位于的网格位置,将此网格节点的电场力赋予子粒子,子粒子CPj的电场力(FCPje)可计算为

  • FCPje=FA1e,xCPjΩA1;FA2e,xCPjΩA2;FA3e,xCPjΩA3;FA3e,xCPjΩA4.
    (8)
  • 式中,A1A2A3A4为粒子i的邻近网格节点;Ω为网格节点所代表的区域;xCPj为子粒子CPj的位置信息; CPj为粒子i的邻近子粒子。

  • 这里核函数的光滑长度h取1.5dx;dx为子粒子的初始粒子间距,m。

  • 图2 粒子分裂插值方法示意图

  • Fig.2 Schematic diagram of particle splitting interpolation method

  • (5)使用SPH方法计算压力梯度力、黏性力和界面张力,然后更新粒子的速度和位置信息[28]。图1中SPH方法计算压力梯度力、界面张力中参数的意义如下:ρimiViuipi分别为粒子i的密度、质量、体积、速度和压力,iWij为相对于粒子i的核函数梯度。采用五次样条核函数,光滑长度取1.8Δx,Δx为SPH粒子i的初始粒子间距。粒子i的黏性力Fiv的计算公式参考Monaghan和Gingold[29]的工作,表示为

  • Fiv=Σi=1nΣj=1n2(d+2)2ηiηjηi+ηjui-ujri-rjri-rj2+(εh)2iWijVj.
    (9)
  • 式中,d 为空间维度,ε取0.01,是为了防止两个粒子太近时分母为0。

  • 粒子i的表面张力计算公式由Zhang等[30]给出,表示为

  • Fis=-βκicin^i
    (10)
  • 式中,κicin^i分别为粒子i的界面曲率、颜色函数和单位法向矢量。

  • 由于边界附近的粒子存在支持域被边界截断的问题,因此采用镜像粒子法[31]。此外SPH粒子经常沿着流线运动,这会导致粒子的非均匀分布,进而影响数值精度,因此改进的粒子位移修正算法[27]表示为

  • δxi=-2humaxΔtΣi=1nΣj=1nmjρj1+0.2WijW(Δx)4×ψijiWij.
    (11)
  • 式中,δxi为粒子i的位移修正矢量;umax为流场的最大速度,m/s;Δt为时间步长,s;W(Δx)为初始粒子间距的核函数值。

  • 公式(11)中ψij被用于保证相界面清晰稳定,在本文中取值定义如下:

  • ψij=1.01, i j ; 1, i j .
    (12)
  • 时间积分方法采用Zhang等[32]修正的预测校正积分法,时间步长满足CFL条件,表示为

  • Δtst=0.5ρh32πβ1/2Δtη=0.125ρh2ηΔtc=hc+umax
    (13)
  • 最终的时间步长Δt取公式(13)中3个公式的最小值。

  • 2 几何模型与模型验证

  • 2.1 几何模型

  • 图3为液滴-液滴聚并模拟的几何模型。在方形的连续相油中加入了两个近端距离为B的圆形液滴,整个几何模型呈左右和上下对称。由于液滴聚并过程的变形参数较小,方形区域边长取8r0。几何模型的左右两个边界施加电势,即Dirichlet(Φ为常数)边界条件,其中右边界电势Φ-为0;上下两个边界施加Neumann(Φn^=0)边界条件,电场方向平行于水平轴。

  • 图3 液滴-液滴聚并的几何模型示意图

  • Fig.3 Schematic of geometrical model of droplet-droplet aggregation

  • 2.2 粒子无关性验证

  • 为了排除粒子分辨率对液滴-液滴聚并行为的影响,采用粒子分辨率为40×40、80×80、120×120和160×160对相向运动的两液滴碰撞过程进行数值模拟。模拟条件:液滴半径r0为1 mm,液滴对初始近端距离B为3 mm,液滴对初始靠近速度v0为1 m·s-1。为了能够表征液滴-液滴的聚并过程,提取了液滴远端距离S1的时间演变曲线,如图4所示。从图4中可以看出,粒子分辨率为120×120和160×160的远端距离演变曲线近乎重合,考虑到计算成本,采用粒子分辨率为120×120对液滴-液滴聚并行为进行数值模拟。

  • 2.3 液滴-液滴聚并模型验证

  • 为了验证液滴-液滴聚并模型的准确性,将两液滴靠近过程的模拟结果与Huang等[32]的试验结果进行对比,见图5(试验结果(a)与模拟结果(b))。从图5中可以看出,在直流电场作用下两个液滴逐渐靠近,并且液滴近端越来越尖锐,最终液膜破碎,两液滴接触,开始发生融合过程,可以发现模拟与试验结果一致性较好。试验的靠近时间为6.9 ms,模拟的靠近时间为6.2 ms,相对误差为10%,因此当前的SPH-FVM耦合方法能够提供较为准确的结果。

  • 图4 两液滴远端距离S1的演变曲线

  • Fig.4 Evolution curve of distance S1 between distal ends of two droplets

  • 图5 液滴-液滴聚并过程的试验结果与模拟结果对比

  • Fig.5 Comparison of experimental and simulated results of droplet-droplet aggregation process

  • 3 结果与讨论

  • 3.1 矩形波电场场下液滴-液滴聚并过程

  • SPH-FVM的耦合清晰了电场作用下液滴界面的变化过程,发现在矩形波电场下,液滴-液滴聚并过程主要是以偶极聚并和振荡聚并为主。图6为电场强度为300 kV·m-1,频率为50 Hz,占空比为50%,初始近端距离为1 mm条件下两液滴聚并过程形状演变示意图。

  • 图6中蓝色区域所示0.01、0.03、0.05和0.07 s为电压即将由高水平转为低水平时刻,两个液滴都是椭球形;而黄色区域所示,即0.02、0.04、0.06和0.08 s是电压即将由低水平转为高水平时刻,两个液滴都接近球形,证实了两液滴在矩形波电场下的振荡变形。同时还观察到在振荡变形过程中近端距离不断缩小。当近端距离足够接近时液滴间的电压力急剧增强,在两个液滴近端形成Taylor锥体,液膜破碎,液滴开始接触融合(0.088 s),然后在界面张力和电压力的共同作用下,接触带增宽,最终融合成粒径更大的液滴。从图7所示的液滴近端距离演变曲线也能看出,在矩形波电场下两液滴间的近端距离随着时间以振荡形式不断减小,当近端距离足够小时,两液滴受到的电压力急剧增加,液膜迅速外排,近端距离急速减小至0,液滴开始融合过程。

  • 图6 矩形波电场下液滴对聚并过程

  • Fig.6 Process of droplet pair aggregation under rectangular wave electric field

  • 图7 矩形波电场下液滴对近端距离演变曲线

  • Fig.7 Evolution curve of droplet to proximal distance under rectangular wave electric field

  • 3.2 矩形波电场下液滴-液滴聚并过程流场分析

  • 由于液滴对在聚并过程中呈上下对称,因此只对上半部分进行分析。图8给出了矩形波电场下两液滴聚并过程的流场分布(箭头代表方向,颜色代表大小,银白色粒子代表液滴粒子分布)。由图8可知,0~0.01 s时,电压处于高水平状态,此时两液滴近端距离较远,在电压力的作用下,液滴界面附近形成了从短轴端点向左右两侧流动的环流,促进了液滴极化变形;0.01~0.02 s时,电压处于低水平状态,在界面张力作用下液滴界面附近形成了从左右两侧流向短轴端点的环流,与施加外电场的环流方向刚好相反,液滴逐渐恢复为球形;0.07 s时,电压处于高水平状态,此时两液滴近端距离较近,液滴间存在较强的电压力,使得液滴内部流体流向液滴对近端,促进液膜排出,同时还观察到在液滴对的远端,外部流体流向液滴对远端拉伸方向,促进液滴对拉伸变形,相比于初始环流区域,此时液滴对内部远端环流占比区域减小;0.08 s时,电压处于低水平状态,在界面张力作用下液滴逐渐恢复为球形,由于此时液滴变形严重不对称,液滴对内部远端环流占比增大;0.088 s时,液滴开始接触,由于电压力和界面张力的共同作用,接触点附近的液膜具有较高的排出速度,随着接触带增宽,液膜排出速度进一步增加,最终液滴将融合为球形。

  • 3.3 矩形波电场下液滴-液滴聚并过程电压力分布

  • 在外加电场作用下两个液滴主要受到了电压力、界面张力和黏性阻力的共同作用。图9为矩形波电场下两液滴界面的电压力分布。由图9可知,液滴接触前,当电压处于高水平状态时(0.01和0.07 s),液滴界面受到的电压力从液滴中间逐渐向两端增大,但近端电压力大于远端电压力,驱动两个液滴相互靠近,且随着液滴对近端距离逐渐减小,近端电压力不断增大,这是导致液滴对近端形成Taylor锥体的原因;当电压处于低水平状态时(0.02和0.08 s),液滴界面没有受到电压力作用,液滴将在界面张力的作用下逐渐恢复为球形。0.088 s时电压处于高水平状态,两个液滴刚开始接触,液滴近端附近仍然存在较高电压力,促进了液膜的排出;随着两液滴接触带增宽,近端电压力减小,最终将导致近端电压力小于远端电压力,这阻碍了液滴对的融合过程,因此在两液滴融合过程中应使电压一直处于低水平状态。

  • 图8 矩形波电场下液滴对聚并过程流场分布

  • Fig.8 Flow field distribution of droplet pair aggregation process under rectangular wave electric field

  • 图9 矩形波电场下液滴对聚并过程电压力分布

  • Fig.9 Distribution of electric pressure on droplet pair aggregation process under rectangular wave electric field

  • 3.4 矩形波电场下界面张力对液滴-液滴聚并过程的影响

  • SPH方法强调了液滴界面的概念和作用力,即由液滴内侧流体和外侧流体共同构成的一层薄膜产生的界面张力。图10为矩形波电场下两液滴的界面张力分布。由图10可知,液滴界面接触前(0.01和0.02 s),界面张力指向液滴内部,阻碍液滴对相互靠近,且0.01 s时液滴两端的界面张力较0.02 s时大,这主要是因为液滴在0.01 s时的极化变形程度比0.02 s时大;液滴界面接触后 (0.07、0.08和0.088 s),在液滴对近端处,液滴界面内侧流体粒子的界面张力指向液滴内部,阻碍液滴变形,而外侧流体粒子的界面张力指向液滴外部,有利于促进液膜排出,且随着液滴对近端距离减小,界面张力逐渐由内侧流体粒子主导转变为由外侧流体粒子主导;当液滴接触后液滴对近端界面张力全部指向液滴外部,远端界面张力指向液滴内部,促进了液滴对的融合过程。

  • 图10 矩形波电场下液滴对聚并过程界面张力分布

  • Fig.10 Interfacial tension distribution of droplet pair aggregation process under rectangular wave electric field

  • 4 结论

  • (1)SPH-FVM相耦合的方法能够较准确地跟踪液滴相界面,反映液滴的运动过程及界面变形,进一步验证了该方法的准确性。

  • (2)矩形波电场下两液滴以不断振荡的形式靠近;液滴对靠近过程中界面张力主要指向液滴内部,阻碍液滴对相互靠近;而在液滴对融合过程中近端界面张力指向液滴外部,远端界面张力指向液滴内部,促进液滴对的融合过程。

  • 参考文献

    • [1] YUDISTIRA H T,NGUYEN V D,DUTTA P,et al.Flight behavior of charged droplets in electrohydrodynamic inkjet printing[J].Applied Physics Letters,2010,96(2):023503.

    • [2] JAWOREK A.Micro-and nanoparticle production by electrospraying[J].Powder Technology,2007,176(1):18-35.

    • [3] YOSHIMOTO H,SHIN Y M,TERAI H,et al.A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering[J].Biomaterials,2003,24(12):2077-2082.

    • [4] KWON S,MOON H,KIM C J.Creating,transporting,cutting,and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits[J].Journal of Microelectromechanical Systems,2003,12(1):70-80.

    • [5] 孙治谦,金有海,王振波.高压脉冲静电破乳过程水滴的破碎临界电场参数[J].中国石油大学学报(自然科学版),2013,37(1):134-138.SUN Zhiqian,JIN Youhai,WANG Zhenbo.Critical electric field parameters of water droplet broken-up in high voltage impulse electrostatic demulsification process[J].Journal of China University of Petroleum(Edition of Natural Science),2013,37(1):134-138.

    • [6] 何利民,杨东海,罗小明,等.新型电聚结器结构参数对液滴聚结特性的影响[J].中国石油大学学报(自然科学版),2011,35(6):105-111.HE Limin,YANG Donghai,LUO Xiaoming,et al.Effects of structural parameters of new electrostatic coalescer on coalescence characteristics of water droplet[J].Journal of China University of Petroleum(Edition of Natural Science),2011,35(6):105-111.

    • [7] owe BERG T G,FERNISH G C,GAUKLER T A.The mechanism of coalescence of liquid drops[J].Journal of the Atmospheric Sciences,1963,20(2):153-158.

    • [8] 龚翔.电场作用下液滴的聚结特性及高压静电破乳研究[D].厦门:集美大学,2015.GONG Xiang.Study on the coalescence characteristics of droplets under electric field and high-voltage electrostatic demulsification[D].Xiamen:Jimei University,2015.

    • [9] ROY S,ANAND V,THAOKAR R M.Breakup and non-coalescence mechanism of aqueous droplets suspended in castor oil under electric field[J].Journal of Fluid Mechanics,2019,878:820-833.

    • [10] HUANG X,HE L,LUO X,et al.Deformation and coalescence of water droplets in viscous fluid under a direct current electric field[J].International Journal of Multiphase Flow,2019,118:1-9.

    • [11] 任瑞娟.高压电场下W/O乳状液液滴-液滴、液滴-界面聚并行为研究[D].青岛:中国石油大学(华东),2018.REN Ruijuan.Study on the coalescence behavior of droplet-droplet and droplet-interface in W/O emulsion under high-voltage electric field[D].Qingdao:China University of Petroleum(East China),2018.

    • [12] LI S,CHEN R,WANG H,et al.Numerical investigation of the moving liquid column coalescing with a droplet in triangular microchannels using CLSVOF method[J].Science Bulletin,2015,60(22):1911-1926.

    • [13] TANGUY S,BERLEMONT A.Application of a level set method for simulation of droplet collisions[J].International Journal of Multiphase Flow,2005,31(9):1015-1035.

    • [14] XU Y,YANG G,HU D.An incompressible smoothed particle hydrodynamics-finite volume method coupling algorithm for interface tracking of two-phase fluid flows[J].International Journal for Numerical Methods in Fluids,2022,94(9):1434-1464.

    • [15] MOLTENI D,VITANZA E,BATTAGLIA O R.Smoothed particles hydrodynamics numerical simulations of droplets walking on viscous vibrating liquid[J].Computers & Fluids,2017,156:449-455.

    • [16] XING L,LI J,JIANG M,et al.Flow field analysis and performance evaluation of a hydrocyclone coalescer[J].Separation Science and Technology,2022,57(18):3035-3052.

    • [17] SAGHATCHI R,RAHMAT A,YILDIZ M.Electrohydrodynamics of a droplet in a highly confined domain:a numerical study[J].Physics of Fluids,2020,32(12):123305.

    • [18] LIU H,CHEN F,WANG P,et al.Simulating electrohydrodynamics with smoothed particle hydrodynamics based on a charge-conservative approach[J].Engineering Analysis with Boundary Elements,2021,124:41-51.

    • [19] 李增亮,王乐峰,董祥伟,等.基于无网格法的浮体与波浪相互作用模拟与试验验证[J].中国石油大学学报(自然科学版),2020,44(2):108-116.LI Zengliang,WANG Lefeng,DONG Xiangwei,et al.Simulation and experimental validation of wave-floating body interaction based on meshless method[J].Journal of China University of Petroleum(Edition of Natural Science),2020,44(2):108-116.

    • [20] MACIÁ F,ANTUONO M,GONZÁLEZ L M,et al.Theoretical analysis of the no-slip boundary condition enforcement in SPH methods[J].Progress of Theoretical Physics,2011,125(6):1091-1121.

    • [21] DI MASCIO A,MARRONE S,COLAGROSSI A,et al.SPH-FV coupling algorithm for solving multi-scale three-dimensional free-surface flows[J].Applied Ocean Research,2021,115:102846.

    • [22] WANG C,YE G,MENG X,et al.A eulerian-Lagrangian coupled method for the simulation of submerged granular column collapse[J].Journal of Marine Science and Engineering,2021,9(6):617.

    • [23] XU Y,YANG G,ZHU Y,et al.A coupled SPH-FVM method for simulating incompressible interfacial flows with large density difference[J].Engineering Analysis with Boundary Elements,2021,128:227-243.

    • [24] BRACKBILL J U,KOTHE D B,ZEMACH C.A continuum method for modeling surface tension[J].Journal of Computational Physics,1992,100(2):335-354.

    • [25] HUA J,LIM L K,WANG C H.Numerical simulation of deformation/motion of a drop suspended in viscous liquids under influence of steady electric fields[J].Physics of Fluids,2008,20(11):113302.

    • [26] ZHU G X,ZOU L,CHEN Z,et al.An improved SPH model for multiphase flows with large density ratios[J].International Journal for Numerical Methods in Fluids,2018,86(2):167-184.

    • [27] SHEPARD D.A two-dimensional interpolation function for irregularly-spaced data:Proceedings of the 1968 23rd ACM National Conference[C].New York:Association for Computing Machinery,1968:517-524.

    • [28] HU X Y,ADAMS N A.A multi-phase SPH method for macroscopic and mesoscopic flows[J].Journal of Computational Physics,2006,213(2):844-861.

    • [29] MONAGHAN J J,GINGOLD R A.Shock simulation by the particle method SPH[J].Journal of Computational Physics,1983,52(2):374-389.

    • [30] ZHANG A,SUN P,MING F.An SPH modeling of bubble rising and coalescing in three dimensions[J].Computer Methods in Applied Mechanics and Engineering,2015,294:189-209.

    • [31] COLAGROSSI A,LANDRINI M.Numerical simulation of interfacial flows by smoothed particle hydrodynamics[J].Journal of Computational Physics,2003,191(2):448-475.

    • [32] HUANG X,HE L,LUO X,et al.Convergence effect of droplet coalescence under AC and pulsed DC electric fields[J].International Journal of Multiphase Flow,2021,143:103776.

  • 参考文献

    • [1] YUDISTIRA H T,NGUYEN V D,DUTTA P,et al.Flight behavior of charged droplets in electrohydrodynamic inkjet printing[J].Applied Physics Letters,2010,96(2):023503.

    • [2] JAWOREK A.Micro-and nanoparticle production by electrospraying[J].Powder Technology,2007,176(1):18-35.

    • [3] YOSHIMOTO H,SHIN Y M,TERAI H,et al.A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering[J].Biomaterials,2003,24(12):2077-2082.

    • [4] KWON S,MOON H,KIM C J.Creating,transporting,cutting,and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits[J].Journal of Microelectromechanical Systems,2003,12(1):70-80.

    • [5] 孙治谦,金有海,王振波.高压脉冲静电破乳过程水滴的破碎临界电场参数[J].中国石油大学学报(自然科学版),2013,37(1):134-138.SUN Zhiqian,JIN Youhai,WANG Zhenbo.Critical electric field parameters of water droplet broken-up in high voltage impulse electrostatic demulsification process[J].Journal of China University of Petroleum(Edition of Natural Science),2013,37(1):134-138.

    • [6] 何利民,杨东海,罗小明,等.新型电聚结器结构参数对液滴聚结特性的影响[J].中国石油大学学报(自然科学版),2011,35(6):105-111.HE Limin,YANG Donghai,LUO Xiaoming,et al.Effects of structural parameters of new electrostatic coalescer on coalescence characteristics of water droplet[J].Journal of China University of Petroleum(Edition of Natural Science),2011,35(6):105-111.

    • [7] owe BERG T G,FERNISH G C,GAUKLER T A.The mechanism of coalescence of liquid drops[J].Journal of the Atmospheric Sciences,1963,20(2):153-158.

    • [8] 龚翔.电场作用下液滴的聚结特性及高压静电破乳研究[D].厦门:集美大学,2015.GONG Xiang.Study on the coalescence characteristics of droplets under electric field and high-voltage electrostatic demulsification[D].Xiamen:Jimei University,2015.

    • [9] ROY S,ANAND V,THAOKAR R M.Breakup and non-coalescence mechanism of aqueous droplets suspended in castor oil under electric field[J].Journal of Fluid Mechanics,2019,878:820-833.

    • [10] HUANG X,HE L,LUO X,et al.Deformation and coalescence of water droplets in viscous fluid under a direct current electric field[J].International Journal of Multiphase Flow,2019,118:1-9.

    • [11] 任瑞娟.高压电场下W/O乳状液液滴-液滴、液滴-界面聚并行为研究[D].青岛:中国石油大学(华东),2018.REN Ruijuan.Study on the coalescence behavior of droplet-droplet and droplet-interface in W/O emulsion under high-voltage electric field[D].Qingdao:China University of Petroleum(East China),2018.

    • [12] LI S,CHEN R,WANG H,et al.Numerical investigation of the moving liquid column coalescing with a droplet in triangular microchannels using CLSVOF method[J].Science Bulletin,2015,60(22):1911-1926.

    • [13] TANGUY S,BERLEMONT A.Application of a level set method for simulation of droplet collisions[J].International Journal of Multiphase Flow,2005,31(9):1015-1035.

    • [14] XU Y,YANG G,HU D.An incompressible smoothed particle hydrodynamics-finite volume method coupling algorithm for interface tracking of two-phase fluid flows[J].International Journal for Numerical Methods in Fluids,2022,94(9):1434-1464.

    • [15] MOLTENI D,VITANZA E,BATTAGLIA O R.Smoothed particles hydrodynamics numerical simulations of droplets walking on viscous vibrating liquid[J].Computers & Fluids,2017,156:449-455.

    • [16] XING L,LI J,JIANG M,et al.Flow field analysis and performance evaluation of a hydrocyclone coalescer[J].Separation Science and Technology,2022,57(18):3035-3052.

    • [17] SAGHATCHI R,RAHMAT A,YILDIZ M.Electrohydrodynamics of a droplet in a highly confined domain:a numerical study[J].Physics of Fluids,2020,32(12):123305.

    • [18] LIU H,CHEN F,WANG P,et al.Simulating electrohydrodynamics with smoothed particle hydrodynamics based on a charge-conservative approach[J].Engineering Analysis with Boundary Elements,2021,124:41-51.

    • [19] 李增亮,王乐峰,董祥伟,等.基于无网格法的浮体与波浪相互作用模拟与试验验证[J].中国石油大学学报(自然科学版),2020,44(2):108-116.LI Zengliang,WANG Lefeng,DONG Xiangwei,et al.Simulation and experimental validation of wave-floating body interaction based on meshless method[J].Journal of China University of Petroleum(Edition of Natural Science),2020,44(2):108-116.

    • [20] MACIÁ F,ANTUONO M,GONZÁLEZ L M,et al.Theoretical analysis of the no-slip boundary condition enforcement in SPH methods[J].Progress of Theoretical Physics,2011,125(6):1091-1121.

    • [21] DI MASCIO A,MARRONE S,COLAGROSSI A,et al.SPH-FV coupling algorithm for solving multi-scale three-dimensional free-surface flows[J].Applied Ocean Research,2021,115:102846.

    • [22] WANG C,YE G,MENG X,et al.A eulerian-Lagrangian coupled method for the simulation of submerged granular column collapse[J].Journal of Marine Science and Engineering,2021,9(6):617.

    • [23] XU Y,YANG G,ZHU Y,et al.A coupled SPH-FVM method for simulating incompressible interfacial flows with large density difference[J].Engineering Analysis with Boundary Elements,2021,128:227-243.

    • [24] BRACKBILL J U,KOTHE D B,ZEMACH C.A continuum method for modeling surface tension[J].Journal of Computational Physics,1992,100(2):335-354.

    • [25] HUA J,LIM L K,WANG C H.Numerical simulation of deformation/motion of a drop suspended in viscous liquids under influence of steady electric fields[J].Physics of Fluids,2008,20(11):113302.

    • [26] ZHU G X,ZOU L,CHEN Z,et al.An improved SPH model for multiphase flows with large density ratios[J].International Journal for Numerical Methods in Fluids,2018,86(2):167-184.

    • [27] SHEPARD D.A two-dimensional interpolation function for irregularly-spaced data:Proceedings of the 1968 23rd ACM National Conference[C].New York:Association for Computing Machinery,1968:517-524.

    • [28] HU X Y,ADAMS N A.A multi-phase SPH method for macroscopic and mesoscopic flows[J].Journal of Computational Physics,2006,213(2):844-861.

    • [29] MONAGHAN J J,GINGOLD R A.Shock simulation by the particle method SPH[J].Journal of Computational Physics,1983,52(2):374-389.

    • [30] ZHANG A,SUN P,MING F.An SPH modeling of bubble rising and coalescing in three dimensions[J].Computer Methods in Applied Mechanics and Engineering,2015,294:189-209.

    • [31] COLAGROSSI A,LANDRINI M.Numerical simulation of interfacial flows by smoothed particle hydrodynamics[J].Journal of Computational Physics,2003,191(2):448-475.

    • [32] HUANG X,HE L,LUO X,et al.Convergence effect of droplet coalescence under AC and pulsed DC electric fields[J].International Journal of Multiphase Flow,2021,143:103776.