en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

宋雅君(1999-),女,博士研究生,研究方向为疏松砂岩储层出砂、地下储气库出砂与控制、砂水协同。E-mail: ssongyajun@163.com。

通信作者:

董长银(1976-),男,教授,博士,博士生导师,研究方向为油气生产固体产出与控制、砂水协同、高效开采完井。E-mail: dongcy@upc.edu.cn。

中图分类号:TE 358

文献标识码:A

文章编号:1673-5005(2025)05-0119-08

DOI:10.3969/j.issn.1673-5005.2025.05.011

参考文献 1
LI J,ZHOU X,GAYUBOV A,et al.Study on production performance characteristics of horizontal wells in low permeability and tight oil reservoirs[J].Energy,2023,284:129286.
参考文献 2
朱海涛,林伯韬,石兰香,等.基于Adam优化算法的水平井流动剖面测温反演方法[J].中国石油大学学报(自然科学版),2023,47(2):99-107.ZHU Haitao,LIN Botao,SHI Lanxiang,et al.An inversion method to calculate horizontal well flow profile using temperature data based on Adam optimization algorithm[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(2):99-107.
参考文献 3
XIONG Y,XU H,WANG Y,et al.Fluid flow with compaction and sand production in unconsolidated sandstone reservoir[J].Petroleum,2018,4(3):358-363.
参考文献 4
董长银,李经纬,周博,等.出砂气藏井底防砂筛管冲蚀动态模拟试验及冲蚀损坏工况评价方法[J].安全与环境学报,2023,23(6):1859-1867.DONG Changyin,LI Jingwei,ZHOU Bo,et al.Dynamic simulation experiments of erosion and erosion damage assessment method of bottom-hole sand control screen in sand-producing gas reservoirs[J].Journal of Safety and Environment,2023,23(6):1859-1867.
参考文献 5
董长银,王肇峰,周博,等.出砂气藏水平井筛管冲蚀损坏机理及抗冲蚀能力的提高[J].石油钻采工艺,2021,43(6):762-771.DONG Changyin,WANG Zhaofeng,ZHOU Bo,et al.Erosion damage mechanism and erosion resistance improvement of screens for horizontal wells in sand producing gas reservoirs[J].Oil Drilling & Production Technology,2021,43(6):762-771.
参考文献 6
刘振平,刘启国,王宏玉,等.底水油藏水平井水脊脊进规律[J].新疆石油地质,2015,36(1):86-89.LIU Zhenping,LIU Qiguo,WANG Hongyu,et al.Water coning laws of horizontal well production in bottom water reservoirs[J].Xinjiang Petroleum Geology,2015,36(1):86-89.
参考文献 7
刘佳,程林松,黄世军.底水油藏水平井开发物理模拟实验研究[J].石油钻探技术,2013,41(1):87-92.LIU Jia,CHENG Linsong,HUANG Shijun.Physical modeling and experiment for horizontal wells in bottom water reservoir[J].Petroleum Drilling Techniques,2013,41(1):87-92.
参考文献 8
李立峰,岳湘安,李良川,等.底水油藏水平井开发水脊规律研究[J].油气地质与采收率,2013,20(1):89-91,95,117.LI Lifeng,YUE Xiang’an,LI Liangchuan,et al.Study on water crest of horizontal wells in reservoirs with bottom water[J].Petroleum Geology and Recovery Efficiency,2013,20(1):89-91,95,117.
参考文献 9
刘欣颖,胡平,程林松,等.水平井开发底水油藏的物理模拟试验研究[J].石油钻探技术,2011,39(2):96-99.LIU Xinying,HU Ping,CHENG Linsong,et al.Experimental study of horizontal well with bottom water drive[J].Petroleum Drilling Techniques,2011,39(2):96-99.
参考文献 10
刘建国,王勤田,杨志军,等.底水油藏水平井开采物理模拟试验研究[J].石油天然气学报,2010,32(1):145-147,152,7.LIU Jianguo,WANG Qintian,YANG Zhijun,et al.Physical simulation experiment of horizontal well production in reservoirs with bottom water[J].Journal of Oil and Gas Technology,2010,32(1):145-147,152,7.
参考文献 11
王家禄,刘玉章,江如意,等.水平井开采底水油藏水脊脊进规律的物理模拟[J].石油勘探与开发,2007,34(5):590-593.WANG Jialu,LIU Yuzhang,JIANG Ruyi,et al.2-D physical modeling of water coning of horizontal well production in bottom water driving reservoirs[J].Petroleum Exploration and Development,2007,34(5):590-593.
参考文献 12
DIKKEN B J.Pressure drop in horizontal wells and its effect on production performance[J].Journal of Petroleum Technology,1990,42(11):1426-1433.
参考文献 13
吴淑红,刘翔鹗,郭尚平.水平段井筒管流的简化模型[J].石油勘探与开发,1999,26(4):64-65,106.WU Shuhong,LIU Xiang’e,GUO Shangping.A simplified model of flow in horizontal wellbore[J].Petroleum Exploration and Development,1999,26(4):64-65,106.
参考文献 14
汪志明,赵天奉,徐立.射孔完井水平井筒变质量湍流压降规律研究[J].石油大学学报(自然科学版),2003,27(1):41-44,6.WANG Zhiming,ZHAO Tianfeng,XU Li.Pressure drop of variable mass flow in horizontal perforated well bore[J].Journal of the University of Petroleum,China(Edition of Natural Science),2003,27(1):41-44,6.
参考文献 15
张琪,周生田,吴宁,等.水平井气液两相变质量流的流动规律研究[J].石油大学学报(自然科学版),2002,26(6):46-49,6.ZHANG Qi,ZHOU Shengtian,WU Ning,et al.Laws of gas-liquid two-phase variable mass flow in horizontal wellbore[J].Journal of the University of Petroleum,China(Edition of Natural Science),2002,26(6):46-49,6.
参考文献 16
刘想平,张兆顺,刘翔鹗,等.水平井筒内与渗流耦合的流动压降计算模型[J].西南石油学院学报,2000,22(2):36-39,3.LIU Xiangping,ZHANG Zhaoshun,LIU Xiang’e,et al.A model to calculate pressure drops of horizontal wellbore variable mass flow coupled with flow in a reservoir[J].Journal of Southwest Petroleum Institute,2000,22(2):36-39,3.
参考文献 17
LI Y,LI H,LI Y.Prediction method of bottom water coning profile and water breakthrough time in bottom water reservoir without barrier[J].Mathematical Problems in Engineering,2015,2015(1):149490.
参考文献 18
侯亚伟.基于动态数据的底水油藏水平井水脊增长模型[J].大庆石油地质与开发,2018,37(2):79-82.HOU Yawei.Growth model of the horizontal-well water crest in the bottom-water oil reservoir based on the dynamic data[J].Petroleum Geology & Oilfield Development in Daqing,2018,37(2):79-82.
参考文献 19
杨云,顾端阳,连运晓,等.多层疏松砂岩气藏水平井出水机理及防控对策:以柴达木盆地台南气田为例[J].天然气工业,2019,39(5):85-92.YANG Yun,GU Duanyang,LIAN Yunxiao,et al.Mechanisms and prevention & control countermeasures of water breakthrough in horizontal wells in multi-layer unconsolidated sandstone gas reservoirs:a case study of the Tainan Gas Field in the Qaidam Basin[J].Natural Gas Industry,2019,39(5):85-92.
参考文献 20
张欣.渗透率非均质对水平井入流规律影响分析[J].特种油气藏,2010,17(2):88-91,125.ZHANG Xin.The effect of permeability heterogeneity on inflow performance in horizontal wells[J].Special Oil & Gas Reservoirs,2010,17(2):88-91,125.
参考文献 21
熊军,何汉平,熊友明,等.水平井分段完井参数对底水脊进影响[J].天然气地球科学,2013,24(6):1232-1237.XIONG Jun,HE Hanping,XIONG Youming,et al.The effect of partial completion parameters in horizontal well on water coning[J].Natural Gas Geoscience,2013,24(6):1232-1237.
参考文献 22
邓晗,马赟,李雪琴,等.水平井分段组合完井产能计算及实例分析[J].中国石油和化工,2014(2):60-62.DENG Han,MA Bin,LI Xueqin,et al.Productivity calculation and case analysis of sectional combined completion of horizontal wells[J].China Petroleum and Chemical Industry,2014(2):60-62.
参考文献 23
姜立富,康凯,李冰,等.一种水平井射孔入流剖面优化方法[J].油气井测试,2021,30(2):1-6.JIANG Lifu,KANG Kai,LI Bing,et al.An optimization method of inflow profile in horizontal well perforation[J].Well Testing,2021,30(2):1-6.
参考文献 24
姜立富.基于耦合模型的射孔完井水平井入流剖面分析与优化[J].重庆科技学院学报(自然科学版),2021,23(3):25-29,83.JIANG Lifu.Analysis and optimization of inflow profile of perforated horizontal well based on coupling model[J].Journal of Chongqing University of Science and Technology(Natural Sciences Edition),2021,23(3):25-29,83.
参考文献 25
白健华,尚宝兵,吴华晓,等.海上底水油藏水平井产液剖面分布规律研究[J].广东石油化工学院学报,2022,32(3):1-5.BAI Jianhua,SHANG Baobing,WU Huaxiao,et al.Study on distribution of production profile of horizontal wells in bottom water reservoir[J].Journal of Guangdong University of Petrochemical Technology,2022,32(3):1-5.
参考文献 26
张舒琴,李海涛,杨时杰,等.水平井中心管完井流入和压力剖面预测[J].钻采工艺,2009,32(6):43-45,142.ZHANG Shuqin,LI Haitao,YANG Shijie,et al.Influx and pressure performance prediction of stinger completion in horizontal well[J].Drilling & Production Technology,2009,32(6):43-45,142.
参考文献 27
齐成伟,龙芝辉,汪志明.水平井流入剖面的简捷计算方法[J].石油钻探技术,2011,39(4):90-94.QI Chengwei,LONG Zhihui,WANG Zhiming.A new and simple method for calculating horizontal well inflow distribution[J].Petroleum Drilling Techniques,2011,39(4):90-94.
参考文献 28
庞伟,刘理明,何祖清,等.基于节点网络的水平井分段流入剖面预测方法[J].石油钻探技术,2019,47(2):93-98.PANG Wei,LIU Liming,HE Zuqing,et al.A dynamic prediction method for segmental flow performance in horizontal wells based on node networks[J].Petroleum Drilling Techniques,2019,47(2):93-98.
参考文献 29
HUANG S,ZHU Y,DING J,et al.A semi-analytical model for predicting inflow profile of long horizontal wells in super-heavy foamy oil reservoir[J].Journal of Petroleum Science and Engineering,2020,195:107952.
参考文献 30
LI H,TAN Y,JIANG B,et al.A semi-analytical model for predicting inflow profile of horizontal wells in bottom-water gas reservoir[J].Journal of Petroleum Science and Engineering,2018,160:351-362.
目录contents

    摘要

    通过大尺度水平井模拟试验装置,人工胶结3种非均质分布模式的储层模拟单元,开展非均质出砂水平井产液剖面演化及热点形成机制模拟试验。结果表明:流体与砂粒产出具有协同效应,强、弱固结区域之间的出砂强度差异随产出而不断加剧,最终出砂强度剖面分布与初始抗压强度分布规律相反,而形态近似于初始孔渗物性分布;在砂液协同产出机制影响下,储层生产后可能出现局部高速入流热点,一个热点区域可能贡献80%以上的流体产量;由于高速入流热点的形成,低固结强度/高孔高渗区域的入流系数可从初始的0.2~0.4升高超过0.8;而储层渗透率由初始的沿水平井缓和变化分布转变为强非均质的分布,渗透率最大可增加17.5倍。

    Abstract

    In this study, simulation experiments were conducted to study the evolution of fluid inflow profiles and the formation mechanism of hotspots in non-homogeneous sand production horizontal wells using a large-scale horizontal well testing equipment. Three non-homogeneous reservoir rock models were constructed by an artificially cementing method. The experimental results show that fluid and sand production can exhibit a synergistic effect, with the difference of sand-out intensity between strongly and weakly consolidated reservoir regions increasing with the fluid production. Eventually, the sand production profile distribution is inverse to the initial compressive strength distribution, resembling the initial rock porosity and permeability distribution. Under the influence of the sand-fluid synergistic production mechanism, local high-rate inflow hotspots may emerge after long production periods. The experiments reveal that a hotspot area can contribute over 80% of the total fluid production. Due to the formation of high-rate inflow hotspots, the inflow coefficient in low consolidation strength/high porosity/high permeability regions can increase from an initial range of 0.2-0.4 to over 0.8. Meanwhile, the permeability distribution of the reservoir can shift from an initial gradual variation along the horizontal well to a highly heterogeneous distribution, with the values of permeability increasing by up to 17.5 times.

  • 疏松砂岩储层是中国油气增储稳产的关键领域,水平井技术是其高效开发的核心手段。然而出砂和出水问题一直是该领域的挑战,尤其在非均质较强的疏松砂岩储层中,水平井生产段可达数百米至上千米,储层向井筒的出砂和产液存在动态演化现象 [1-2]。实际生产中,砂水产出相互协同[3],且出砂问题常导致完井管柱被携砂流体冲蚀破坏[4-5]。长井段中局部存在高速入流热点[4],这表明储层非均质性会导致不同区域的出砂与出水特征差异,但当前对砂液入流热点的动态演化了解不足,缺乏准确定位,使后续完井优化和生产控制具有盲目性。已有的研究多聚焦于水平井出水机制,特别是底水分布与上升规律[6-13],如“中部见水-两边扩展-全井水淹-翼部抬升”的模式[9-11]。近年来发展了多种控水与产液剖面预测方法,涵盖了井筒内流体流动规律[12-18]、储层非均质性对产液剖面影响[19-24]等方面。但这些研究大多侧重静态视角[25-30],较少考虑砂粒产出对储层物性演化的影响,也未深入探讨水平井高速入流热点的形成机制及其对产液剖面的影响。针对这一问题,笔者通过大尺度水平井砂液产出模拟试验平台,模拟3种储层强度非均质分布模式,并开展非均质疏松砂岩储层水平井砂液产出剖面动态演化模拟试验,揭示非均质长井段中高速入流热点的形成机制,分析其对砂液产出规律的影响,为疏松砂岩储层水平井砂液高效协同控制和生产优化提供科学依据和工程参考。

  • 1 非均质出砂水平井模拟试验

  • 1.1 试验原理与方法

  • 非均质出砂水平井模拟试验装置示意图如图1所示。包含储层模拟单元、井筒模拟单元、中间管线、泵送系统和数据采集系统等模块。储层和井筒模拟单元长度均为10 m,通过中间管线模拟射孔孔眼连接。在储层模拟单元内充填不同固结剂含量的砂,还原储层物性沿井筒的非均质性。模拟井筒直径为330 mm,采用透明材质,可实时观察砂液产出情况,且不设挡砂装置,便于模拟真实的砂液产出和动态演化过程。通过压差传感器和流量计实时监测各网格,获取其动态试验参数,并绘制液体与砂的产出剖面,分析其随试验时间的动态演化规律。

  • 图1 非均质出砂水平井模拟试验装置示意图

  • Fig.1 Schematic diagram of experimental device for simulating sand-fluid production in heterogeneous reservoir

  • 1.2 试验材料与条件

  • 模拟地层砂为中值粒径150 μm的天然石英砂与泥质混合。泥质质量分数约为10%,成分由伊利石、高岭石与蒙脱石3种黏土矿物按照质量比3∶1∶1配制。固砂剂采用环氧树脂和改性酚醛树脂,为油田现场常用的化学固砂剂。设置系列模拟地层砂与固砂剂的比例,制作人造标准岩样,于地层模拟单元相同的环境中进行候凝,测试不同混合比例下岩样的强度参数、渗透率及孔隙度,如表1所示。砂粒间的固结强度与砂粒剥落临界条件直接相关,但由于粒间固结强度难以测量,研究中利用测试的岩样抗拉强度与抗压强度间接进行间接表征。根据试验方案所需各地层网格物性,选择适当的固砂剂类型及质量分数。

  • 表1 不同固砂剂比例下的岩样孔渗与强度参数

  • Table1 Porosity, permeability and strength parameters of rock samples with different ratio of sand cementing agents

  • 储层在宏观和微观层面均存在非均质性,水平井井段可达几百米,生产区间孔渗差异可能达到数百倍。研究以模拟地层单元为对象,将其划分为12个网格,各网格填入候凝模拟砂,并设置单调递减、凸形变化和凹形变化3种非均质模式,单轴抗压强度范围分别为0.54~2.75、0.54~2.75和1.47~2.75 MPa。试验通过扩大最强与最弱固结网格的差异,模拟非均质储层的物性分布。试验在高排量长周期条件下进行,设置阶梯递增流量(3、5、7、10 m3/h),使用黏度为1 mPa·s的清水驱替,便于实时观察砂水产出情况。试验过程中储层模拟单元内压力保持在0.1~2 MPa,井筒模拟单元内流动压力近似为大气压。

  • 2 非均质入流动态过程

  • 2.1 流体入流剖面演化

  • 试验过程中,通过透明井筒观察到非均质地层最弱胶结部位(单调变化非均质模式地层的网格12)呈现出3种典型的入流现象,如图2所示。首先,全井段各网格入流速度较慢且保持稳定。在胶结最弱的网格,井筒内液体出现轻微出砂堆积,流体浑浊(图2(a)),并有细颗粒和少量泥质成分剥落;然后,局部区域大量出砂,井筒内液体迅速变浑浊,流量显著增大,进入快速入流阶段(图2(b));快速入流持续一段时间后,出砂减缓,井筒流体逐渐变清,局部流速稳定,形成最终的高速入流热点(图2(c))。根据试验现象,非均匀出砂水平井的典型入流过程可分为全井段稳定入流、入流加剧大量出砂、流量稳定出砂减缓3个阶段。

  • 图2 非均匀出砂储层的极弱胶结处入流过程

  • Fig.2 Typical inflow process at very weak consolidation area of non-homogeneous sanding reservoir

  • 试验中收集各阶段产出砂样,发现流体携带的固相不仅为离散砂,还有团簇砂,如图3所示。不同入流阶段均存在团簇砂,导致进入井筒的固相粒径远大于模拟地层。尤其在中期快速入流阶段,最弱胶结部位出砂呈连续垮塌状,大量砂团剥离,粒径中值达到模拟砂的 9.5 倍(图 4)。 产出固相的粒径分布为防砂精度优化提供了重要参考。

  • 图3 极弱胶结处各个驱替阶段收集的产出固相样品

  • Fig.3 Produced solid sample at very weak consolidation area

  • 图4 模拟地层砂与极弱胶结处产出固相样品粒径分布

  • Fig.4 Particle size distribution of simulated formation sand and produced solid sample at very weak consolidation area

  • 试验过程中,由于各网格流量不固定,采用入流系数(即某网格入流流量与总流量的比值)来描述各网格的入流程度。如图5所示,入流剖面显示出明显的时空非均匀性,体现在相同时间点不同入流口流量的差异以及同一入流口在不同驱替时间的流量变化。在单调变化非均质模型地层中,初始各储层网格的入流系数极差缓慢增大,入流系数整体分布规律与储层强度及渗透率分布规律相反。最终初始固结强度最弱的网格10和网格12入流系数之和为0.92。对于凸形变化非均质模式地层,其整体分布规律也与初始孔渗物性分布规律类似,各阶段不同网格入流系数整体呈现两端高中间低的分布。最终阶段,网格1与12流量之和占总流量90%以上。值得注意的是,凹形变化非均质模式地层相较于前两类试验,入流系数集中程度较小,主要由于储层各网格强度差降低导致入流剖面更为均匀,同时在试验结束后观察到高速入流孔道直径仅为1 cm,明显小于单调递减型与拱型分布试验中产生的孔道(约10 cm)。同网格不同阶段入流系数差异说明长驱替周期下各储层区域物性产生了不同程度的改变,并最终导致非均匀分布的入流量。

  • 图5 不同非均质模式储层的流体入流剖面演变结果

  • Fig.5 Evolution of fluid inflow profiles in simulation reservoirs with different heterogeneous models

  • 2.2 出砂强度剖面演化

  • 用质量含砂率来表征储层模拟单元各网格出砂强度,得到不同非均质模式下出砂强度剖面随时间的演化情况,如图6所示。含砂率随时间变化规律并不明显,但与各阶段入流系数变化密切相关。在单调递减模式储层中,从网格1至12出砂逐渐加剧,到第二阶段总出砂量急剧上升形成地层孔道,网格10含砂率达到13.2‰,迅速产生第二个地层孔道,并进入稳定高速入流阶段,此后含砂率下降至较低水平。最终总出砂强度剖面呈现出沿着入流网格逐渐增大的形态。同一网格流体含砂率在不同驱替阶段差距较大,例如在凸形非均质模式地层中,网格12在第一阶段与第二阶段差值可达12‰。从3种非均质模式的结果中均可以看出强、弱固结区域之间的出砂强度差异随驱替进行均在第二阶段被迅速强化,最终各区域的出砂强度剖面的分布与各储层区域强度分布规律相反,而初始孔渗物性分布类似。

  • 图6 不同模式非均质模式储层的出砂强度剖面演变结果

  • Fig.6 Evolution of sand-producing severity profiles in simulation reservoirs with different heterogeneous models

  • 3 入流热点形成机制

  • 3.1 热点区域地层形态

  • 试验结束后打开单元上盖板,观察单调变化非均质模式储层砂液产出后的宏观形态,如图7所示。储层模拟单元砂体总厚度为200 mm,在当前试验条件和周期内,出砂孔道未延伸到该位置,因此在砂体上表面(流体入口端)没有出现明显的亏空。

  • 在试验中,从储层单元取出砂体后,观察其侧面及底部表面(流出端)发现,在弱胶结的网格12中,存在直径约为2 cm的孔洞(图8(a))。进一步剖开孔洞发现,其实质为贯穿储层表面与底部入流口的地层孔道,孔道内径约为1 cm(图8(b))。该孔道形成于储层弱固结区域,砂粒剥落并从底部入流口产出,导致储层底部开始形成亏空区。局部流通性增强,流速加快,使出砂现象继续发展,亏空区域逐渐向上延伸。几乎在出砂孔道形成的瞬间,流体集中流向低阻力区域,形成高速入流热点。这一过程解释了非均匀出砂水平井入流过程中的第二阶段现象,储层出砂孔道的形成标志着高速入流热点的产生。

  • 对比网格1和网格4的高固结强度井段位置,发现网格1的砂体表层基本完整,仅有少量砂粒脱落造成的微小孔洞,未见明显亏空(图9(a))。而网格4的砂体固结强度较弱,表面出现较明显的出砂孔洞(图9(b))。越靠近储层底部,砂粒剥落越严重,主要集中在储层底部的产出口(射孔孔眼附近)。在弱胶结区域,剥落的砂粒需要运移空间,导致亏空孔洞从底部逐渐向上延伸。

  • 3.2 热点形成机制

  • 对比试验前后各非均质模式下储层的渗透率变化(图10),渗透率的增幅反映了砂体出砂后孔喉结构的整体变化。单调变化、凸形变化和凹形变化储层的渗透率在砂液产出后均有所增加,但不同固结强度区域的增幅差异显著。在单调变化模式下,渗透率沿入流网格逐渐增大,试验结束时,入流热点区域(网格9~12)的渗透率增幅明显大于其他区域(网格1~8)。这种差距在入流第二阶段,尤其是局部流量增大和快速出砂时更加突出。类似地,凸形和凹形模式也表现出渗透率沿网格剧烈变化的趋势。弱固结区域渗透率可增加最多17.5倍,而强固结区域的增幅仅为5%。弱固结区域因出砂形成孔道,流动阻力减小,渗透率显著增加;而强固结区域出砂较慢,渗透率增加缓慢。这种不一致的出砂强度导致砂体孔喉结构变化不同,强弱固结区域渗透率逐渐差异化,形成入流热点的前提。最终,渗透率在强弱固结区域呈现明显两极分化,且在后期稳定的高速入流阶段,80%以上的流量集中在热点区域。

  • 图7 单调变化非均质模式储层模拟单元的表面形态

  • Fig.7 External shape of monotonically varying heterogeneous reservoir simulated module

  • 图8 弱固结网格12处储层内出砂孔洞形态 (倒置的砂体)

  • Fig.8 Sanding cavity of weak cementation location 12 (inverted sand body)

  • 图9 强固结网格1和4位置岩样表面形态

  • Fig.9 Sanding pattern on surface of location 1 and 4 with relatively high cementation strength

  • 图10 试验前后渗透率对比

  • Fig.10 Comparison of permeability before and after experiment

  • 要形成高速入流热点,储层必须具备强烈的非均质性以及达到出砂的临界条件。长水平段水平井投产后,初始投产状态下,储层中的弱胶结区域因微应力和流体拖曳作用导致砂粒剥落,出砂剖面和流体产出剖面取决于储层的初始非均质性。在局部出砂区域,砂粒的产出会导致亏空,改变孔喉结构,增大局部孔隙度、渗透率和流通性,同时改变微流场,使出砂区域的流速增大。储层的出砂过程受砂粒胶结强度和流体流速的双重控制,流速增加加剧出砂,进一步疏通出砂区域的孔喉,促进砂粒产出。该机制使储层的出砂和流体产出几乎同步演化,弱固结区域的砂粒剥落形成亏空,增强流通性,进而加剧局部流体的集中入流。经过长周期的生产和剖面演化,储层最终形成强弱区域分化,局部区域形成高速入流热点,如图11所示。

  • 图11 高速入流热点形成的砂液微观协同产出机制示意图

  • Fig.11 Schematic diagram of sand-fluid collaborative production mechanism

  • 4 结论

  • (1)非均匀出砂水平井典型入流过程分为全井段稳定入流、入流加剧大量出砂、流量稳定后出砂减缓3个阶段。流体与砂粒的产出具有协同效应,强、弱固结区域的出砂强度差异随着生产进行而加剧,最终出砂强度分布与初始孔渗物性相似,而与初始岩石强度分布相反。

  • (2)在砂液协同产出机制的影响下,非均质疏松砂岩储层长周期生产后可能出现局部高速入流热点。形成高速入流热点的必要条件是达到临界出砂条件并具备非均质性。热点区域的入流系数可从0.2~0.4升高超过0.8,且可能贡献80%以上的流体产出流量。

  • (3)长周期生产后,非均质疏松砂岩储层的渗透率由初始的缓和变化分布转为强非均质分布。高渗区域的渗透率可增加17.5倍,而低渗区域渗透率增幅较小,导致强弱固结区域物性两极分化。

  • 参考文献

    • [1] LI J,ZHOU X,GAYUBOV A,et al.Study on production performance characteristics of horizontal wells in low permeability and tight oil reservoirs[J].Energy,2023,284:129286.

    • [2] 朱海涛,林伯韬,石兰香,等.基于Adam优化算法的水平井流动剖面测温反演方法[J].中国石油大学学报(自然科学版),2023,47(2):99-107.ZHU Haitao,LIN Botao,SHI Lanxiang,et al.An inversion method to calculate horizontal well flow profile using temperature data based on Adam optimization algorithm[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(2):99-107.

    • [3] XIONG Y,XU H,WANG Y,et al.Fluid flow with compaction and sand production in unconsolidated sandstone reservoir[J].Petroleum,2018,4(3):358-363.

    • [4] 董长银,李经纬,周博,等.出砂气藏井底防砂筛管冲蚀动态模拟试验及冲蚀损坏工况评价方法[J].安全与环境学报,2023,23(6):1859-1867.DONG Changyin,LI Jingwei,ZHOU Bo,et al.Dynamic simulation experiments of erosion and erosion damage assessment method of bottom-hole sand control screen in sand-producing gas reservoirs[J].Journal of Safety and Environment,2023,23(6):1859-1867.

    • [5] 董长银,王肇峰,周博,等.出砂气藏水平井筛管冲蚀损坏机理及抗冲蚀能力的提高[J].石油钻采工艺,2021,43(6):762-771.DONG Changyin,WANG Zhaofeng,ZHOU Bo,et al.Erosion damage mechanism and erosion resistance improvement of screens for horizontal wells in sand producing gas reservoirs[J].Oil Drilling & Production Technology,2021,43(6):762-771.

    • [6] 刘振平,刘启国,王宏玉,等.底水油藏水平井水脊脊进规律[J].新疆石油地质,2015,36(1):86-89.LIU Zhenping,LIU Qiguo,WANG Hongyu,et al.Water coning laws of horizontal well production in bottom water reservoirs[J].Xinjiang Petroleum Geology,2015,36(1):86-89.

    • [7] 刘佳,程林松,黄世军.底水油藏水平井开发物理模拟实验研究[J].石油钻探技术,2013,41(1):87-92.LIU Jia,CHENG Linsong,HUANG Shijun.Physical modeling and experiment for horizontal wells in bottom water reservoir[J].Petroleum Drilling Techniques,2013,41(1):87-92.

    • [8] 李立峰,岳湘安,李良川,等.底水油藏水平井开发水脊规律研究[J].油气地质与采收率,2013,20(1):89-91,95,117.LI Lifeng,YUE Xiang’an,LI Liangchuan,et al.Study on water crest of horizontal wells in reservoirs with bottom water[J].Petroleum Geology and Recovery Efficiency,2013,20(1):89-91,95,117.

    • [9] 刘欣颖,胡平,程林松,等.水平井开发底水油藏的物理模拟试验研究[J].石油钻探技术,2011,39(2):96-99.LIU Xinying,HU Ping,CHENG Linsong,et al.Experimental study of horizontal well with bottom water drive[J].Petroleum Drilling Techniques,2011,39(2):96-99.

    • [10] 刘建国,王勤田,杨志军,等.底水油藏水平井开采物理模拟试验研究[J].石油天然气学报,2010,32(1):145-147,152,7.LIU Jianguo,WANG Qintian,YANG Zhijun,et al.Physical simulation experiment of horizontal well production in reservoirs with bottom water[J].Journal of Oil and Gas Technology,2010,32(1):145-147,152,7.

    • [11] 王家禄,刘玉章,江如意,等.水平井开采底水油藏水脊脊进规律的物理模拟[J].石油勘探与开发,2007,34(5):590-593.WANG Jialu,LIU Yuzhang,JIANG Ruyi,et al.2-D physical modeling of water coning of horizontal well production in bottom water driving reservoirs[J].Petroleum Exploration and Development,2007,34(5):590-593.

    • [12] DIKKEN B J.Pressure drop in horizontal wells and its effect on production performance[J].Journal of Petroleum Technology,1990,42(11):1426-1433.

    • [13] 吴淑红,刘翔鹗,郭尚平.水平段井筒管流的简化模型[J].石油勘探与开发,1999,26(4):64-65,106.WU Shuhong,LIU Xiang’e,GUO Shangping.A simplified model of flow in horizontal wellbore[J].Petroleum Exploration and Development,1999,26(4):64-65,106.

    • [14] 汪志明,赵天奉,徐立.射孔完井水平井筒变质量湍流压降规律研究[J].石油大学学报(自然科学版),2003,27(1):41-44,6.WANG Zhiming,ZHAO Tianfeng,XU Li.Pressure drop of variable mass flow in horizontal perforated well bore[J].Journal of the University of Petroleum,China(Edition of Natural Science),2003,27(1):41-44,6.

    • [15] 张琪,周生田,吴宁,等.水平井气液两相变质量流的流动规律研究[J].石油大学学报(自然科学版),2002,26(6):46-49,6.ZHANG Qi,ZHOU Shengtian,WU Ning,et al.Laws of gas-liquid two-phase variable mass flow in horizontal wellbore[J].Journal of the University of Petroleum,China(Edition of Natural Science),2002,26(6):46-49,6.

    • [16] 刘想平,张兆顺,刘翔鹗,等.水平井筒内与渗流耦合的流动压降计算模型[J].西南石油学院学报,2000,22(2):36-39,3.LIU Xiangping,ZHANG Zhaoshun,LIU Xiang’e,et al.A model to calculate pressure drops of horizontal wellbore variable mass flow coupled with flow in a reservoir[J].Journal of Southwest Petroleum Institute,2000,22(2):36-39,3.

    • [17] LI Y,LI H,LI Y.Prediction method of bottom water coning profile and water breakthrough time in bottom water reservoir without barrier[J].Mathematical Problems in Engineering,2015,2015(1):149490.

    • [18] 侯亚伟.基于动态数据的底水油藏水平井水脊增长模型[J].大庆石油地质与开发,2018,37(2):79-82.HOU Yawei.Growth model of the horizontal-well water crest in the bottom-water oil reservoir based on the dynamic data[J].Petroleum Geology & Oilfield Development in Daqing,2018,37(2):79-82.

    • [19] 杨云,顾端阳,连运晓,等.多层疏松砂岩气藏水平井出水机理及防控对策:以柴达木盆地台南气田为例[J].天然气工业,2019,39(5):85-92.YANG Yun,GU Duanyang,LIAN Yunxiao,et al.Mechanisms and prevention & control countermeasures of water breakthrough in horizontal wells in multi-layer unconsolidated sandstone gas reservoirs:a case study of the Tainan Gas Field in the Qaidam Basin[J].Natural Gas Industry,2019,39(5):85-92.

    • [20] 张欣.渗透率非均质对水平井入流规律影响分析[J].特种油气藏,2010,17(2):88-91,125.ZHANG Xin.The effect of permeability heterogeneity on inflow performance in horizontal wells[J].Special Oil & Gas Reservoirs,2010,17(2):88-91,125.

    • [21] 熊军,何汉平,熊友明,等.水平井分段完井参数对底水脊进影响[J].天然气地球科学,2013,24(6):1232-1237.XIONG Jun,HE Hanping,XIONG Youming,et al.The effect of partial completion parameters in horizontal well on water coning[J].Natural Gas Geoscience,2013,24(6):1232-1237.

    • [22] 邓晗,马赟,李雪琴,等.水平井分段组合完井产能计算及实例分析[J].中国石油和化工,2014(2):60-62.DENG Han,MA Bin,LI Xueqin,et al.Productivity calculation and case analysis of sectional combined completion of horizontal wells[J].China Petroleum and Chemical Industry,2014(2):60-62.

    • [23] 姜立富,康凯,李冰,等.一种水平井射孔入流剖面优化方法[J].油气井测试,2021,30(2):1-6.JIANG Lifu,KANG Kai,LI Bing,et al.An optimization method of inflow profile in horizontal well perforation[J].Well Testing,2021,30(2):1-6.

    • [24] 姜立富.基于耦合模型的射孔完井水平井入流剖面分析与优化[J].重庆科技学院学报(自然科学版),2021,23(3):25-29,83.JIANG Lifu.Analysis and optimization of inflow profile of perforated horizontal well based on coupling model[J].Journal of Chongqing University of Science and Technology(Natural Sciences Edition),2021,23(3):25-29,83.

    • [25] 白健华,尚宝兵,吴华晓,等.海上底水油藏水平井产液剖面分布规律研究[J].广东石油化工学院学报,2022,32(3):1-5.BAI Jianhua,SHANG Baobing,WU Huaxiao,et al.Study on distribution of production profile of horizontal wells in bottom water reservoir[J].Journal of Guangdong University of Petrochemical Technology,2022,32(3):1-5.

    • [26] 张舒琴,李海涛,杨时杰,等.水平井中心管完井流入和压力剖面预测[J].钻采工艺,2009,32(6):43-45,142.ZHANG Shuqin,LI Haitao,YANG Shijie,et al.Influx and pressure performance prediction of stinger completion in horizontal well[J].Drilling & Production Technology,2009,32(6):43-45,142.

    • [27] 齐成伟,龙芝辉,汪志明.水平井流入剖面的简捷计算方法[J].石油钻探技术,2011,39(4):90-94.QI Chengwei,LONG Zhihui,WANG Zhiming.A new and simple method for calculating horizontal well inflow distribution[J].Petroleum Drilling Techniques,2011,39(4):90-94.

    • [28] 庞伟,刘理明,何祖清,等.基于节点网络的水平井分段流入剖面预测方法[J].石油钻探技术,2019,47(2):93-98.PANG Wei,LIU Liming,HE Zuqing,et al.A dynamic prediction method for segmental flow performance in horizontal wells based on node networks[J].Petroleum Drilling Techniques,2019,47(2):93-98.

    • [29] HUANG S,ZHU Y,DING J,et al.A semi-analytical model for predicting inflow profile of long horizontal wells in super-heavy foamy oil reservoir[J].Journal of Petroleum Science and Engineering,2020,195:107952.

    • [30] LI H,TAN Y,JIANG B,et al.A semi-analytical model for predicting inflow profile of horizontal wells in bottom-water gas reservoir[J].Journal of Petroleum Science and Engineering,2018,160:351-362.

  • 参考文献

    • [1] LI J,ZHOU X,GAYUBOV A,et al.Study on production performance characteristics of horizontal wells in low permeability and tight oil reservoirs[J].Energy,2023,284:129286.

    • [2] 朱海涛,林伯韬,石兰香,等.基于Adam优化算法的水平井流动剖面测温反演方法[J].中国石油大学学报(自然科学版),2023,47(2):99-107.ZHU Haitao,LIN Botao,SHI Lanxiang,et al.An inversion method to calculate horizontal well flow profile using temperature data based on Adam optimization algorithm[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(2):99-107.

    • [3] XIONG Y,XU H,WANG Y,et al.Fluid flow with compaction and sand production in unconsolidated sandstone reservoir[J].Petroleum,2018,4(3):358-363.

    • [4] 董长银,李经纬,周博,等.出砂气藏井底防砂筛管冲蚀动态模拟试验及冲蚀损坏工况评价方法[J].安全与环境学报,2023,23(6):1859-1867.DONG Changyin,LI Jingwei,ZHOU Bo,et al.Dynamic simulation experiments of erosion and erosion damage assessment method of bottom-hole sand control screen in sand-producing gas reservoirs[J].Journal of Safety and Environment,2023,23(6):1859-1867.

    • [5] 董长银,王肇峰,周博,等.出砂气藏水平井筛管冲蚀损坏机理及抗冲蚀能力的提高[J].石油钻采工艺,2021,43(6):762-771.DONG Changyin,WANG Zhaofeng,ZHOU Bo,et al.Erosion damage mechanism and erosion resistance improvement of screens for horizontal wells in sand producing gas reservoirs[J].Oil Drilling & Production Technology,2021,43(6):762-771.

    • [6] 刘振平,刘启国,王宏玉,等.底水油藏水平井水脊脊进规律[J].新疆石油地质,2015,36(1):86-89.LIU Zhenping,LIU Qiguo,WANG Hongyu,et al.Water coning laws of horizontal well production in bottom water reservoirs[J].Xinjiang Petroleum Geology,2015,36(1):86-89.

    • [7] 刘佳,程林松,黄世军.底水油藏水平井开发物理模拟实验研究[J].石油钻探技术,2013,41(1):87-92.LIU Jia,CHENG Linsong,HUANG Shijun.Physical modeling and experiment for horizontal wells in bottom water reservoir[J].Petroleum Drilling Techniques,2013,41(1):87-92.

    • [8] 李立峰,岳湘安,李良川,等.底水油藏水平井开发水脊规律研究[J].油气地质与采收率,2013,20(1):89-91,95,117.LI Lifeng,YUE Xiang’an,LI Liangchuan,et al.Study on water crest of horizontal wells in reservoirs with bottom water[J].Petroleum Geology and Recovery Efficiency,2013,20(1):89-91,95,117.

    • [9] 刘欣颖,胡平,程林松,等.水平井开发底水油藏的物理模拟试验研究[J].石油钻探技术,2011,39(2):96-99.LIU Xinying,HU Ping,CHENG Linsong,et al.Experimental study of horizontal well with bottom water drive[J].Petroleum Drilling Techniques,2011,39(2):96-99.

    • [10] 刘建国,王勤田,杨志军,等.底水油藏水平井开采物理模拟试验研究[J].石油天然气学报,2010,32(1):145-147,152,7.LIU Jianguo,WANG Qintian,YANG Zhijun,et al.Physical simulation experiment of horizontal well production in reservoirs with bottom water[J].Journal of Oil and Gas Technology,2010,32(1):145-147,152,7.

    • [11] 王家禄,刘玉章,江如意,等.水平井开采底水油藏水脊脊进规律的物理模拟[J].石油勘探与开发,2007,34(5):590-593.WANG Jialu,LIU Yuzhang,JIANG Ruyi,et al.2-D physical modeling of water coning of horizontal well production in bottom water driving reservoirs[J].Petroleum Exploration and Development,2007,34(5):590-593.

    • [12] DIKKEN B J.Pressure drop in horizontal wells and its effect on production performance[J].Journal of Petroleum Technology,1990,42(11):1426-1433.

    • [13] 吴淑红,刘翔鹗,郭尚平.水平段井筒管流的简化模型[J].石油勘探与开发,1999,26(4):64-65,106.WU Shuhong,LIU Xiang’e,GUO Shangping.A simplified model of flow in horizontal wellbore[J].Petroleum Exploration and Development,1999,26(4):64-65,106.

    • [14] 汪志明,赵天奉,徐立.射孔完井水平井筒变质量湍流压降规律研究[J].石油大学学报(自然科学版),2003,27(1):41-44,6.WANG Zhiming,ZHAO Tianfeng,XU Li.Pressure drop of variable mass flow in horizontal perforated well bore[J].Journal of the University of Petroleum,China(Edition of Natural Science),2003,27(1):41-44,6.

    • [15] 张琪,周生田,吴宁,等.水平井气液两相变质量流的流动规律研究[J].石油大学学报(自然科学版),2002,26(6):46-49,6.ZHANG Qi,ZHOU Shengtian,WU Ning,et al.Laws of gas-liquid two-phase variable mass flow in horizontal wellbore[J].Journal of the University of Petroleum,China(Edition of Natural Science),2002,26(6):46-49,6.

    • [16] 刘想平,张兆顺,刘翔鹗,等.水平井筒内与渗流耦合的流动压降计算模型[J].西南石油学院学报,2000,22(2):36-39,3.LIU Xiangping,ZHANG Zhaoshun,LIU Xiang’e,et al.A model to calculate pressure drops of horizontal wellbore variable mass flow coupled with flow in a reservoir[J].Journal of Southwest Petroleum Institute,2000,22(2):36-39,3.

    • [17] LI Y,LI H,LI Y.Prediction method of bottom water coning profile and water breakthrough time in bottom water reservoir without barrier[J].Mathematical Problems in Engineering,2015,2015(1):149490.

    • [18] 侯亚伟.基于动态数据的底水油藏水平井水脊增长模型[J].大庆石油地质与开发,2018,37(2):79-82.HOU Yawei.Growth model of the horizontal-well water crest in the bottom-water oil reservoir based on the dynamic data[J].Petroleum Geology & Oilfield Development in Daqing,2018,37(2):79-82.

    • [19] 杨云,顾端阳,连运晓,等.多层疏松砂岩气藏水平井出水机理及防控对策:以柴达木盆地台南气田为例[J].天然气工业,2019,39(5):85-92.YANG Yun,GU Duanyang,LIAN Yunxiao,et al.Mechanisms and prevention & control countermeasures of water breakthrough in horizontal wells in multi-layer unconsolidated sandstone gas reservoirs:a case study of the Tainan Gas Field in the Qaidam Basin[J].Natural Gas Industry,2019,39(5):85-92.

    • [20] 张欣.渗透率非均质对水平井入流规律影响分析[J].特种油气藏,2010,17(2):88-91,125.ZHANG Xin.The effect of permeability heterogeneity on inflow performance in horizontal wells[J].Special Oil & Gas Reservoirs,2010,17(2):88-91,125.

    • [21] 熊军,何汉平,熊友明,等.水平井分段完井参数对底水脊进影响[J].天然气地球科学,2013,24(6):1232-1237.XIONG Jun,HE Hanping,XIONG Youming,et al.The effect of partial completion parameters in horizontal well on water coning[J].Natural Gas Geoscience,2013,24(6):1232-1237.

    • [22] 邓晗,马赟,李雪琴,等.水平井分段组合完井产能计算及实例分析[J].中国石油和化工,2014(2):60-62.DENG Han,MA Bin,LI Xueqin,et al.Productivity calculation and case analysis of sectional combined completion of horizontal wells[J].China Petroleum and Chemical Industry,2014(2):60-62.

    • [23] 姜立富,康凯,李冰,等.一种水平井射孔入流剖面优化方法[J].油气井测试,2021,30(2):1-6.JIANG Lifu,KANG Kai,LI Bing,et al.An optimization method of inflow profile in horizontal well perforation[J].Well Testing,2021,30(2):1-6.

    • [24] 姜立富.基于耦合模型的射孔完井水平井入流剖面分析与优化[J].重庆科技学院学报(自然科学版),2021,23(3):25-29,83.JIANG Lifu.Analysis and optimization of inflow profile of perforated horizontal well based on coupling model[J].Journal of Chongqing University of Science and Technology(Natural Sciences Edition),2021,23(3):25-29,83.

    • [25] 白健华,尚宝兵,吴华晓,等.海上底水油藏水平井产液剖面分布规律研究[J].广东石油化工学院学报,2022,32(3):1-5.BAI Jianhua,SHANG Baobing,WU Huaxiao,et al.Study on distribution of production profile of horizontal wells in bottom water reservoir[J].Journal of Guangdong University of Petrochemical Technology,2022,32(3):1-5.

    • [26] 张舒琴,李海涛,杨时杰,等.水平井中心管完井流入和压力剖面预测[J].钻采工艺,2009,32(6):43-45,142.ZHANG Shuqin,LI Haitao,YANG Shijie,et al.Influx and pressure performance prediction of stinger completion in horizontal well[J].Drilling & Production Technology,2009,32(6):43-45,142.

    • [27] 齐成伟,龙芝辉,汪志明.水平井流入剖面的简捷计算方法[J].石油钻探技术,2011,39(4):90-94.QI Chengwei,LONG Zhihui,WANG Zhiming.A new and simple method for calculating horizontal well inflow distribution[J].Petroleum Drilling Techniques,2011,39(4):90-94.

    • [28] 庞伟,刘理明,何祖清,等.基于节点网络的水平井分段流入剖面预测方法[J].石油钻探技术,2019,47(2):93-98.PANG Wei,LIU Liming,HE Zuqing,et al.A dynamic prediction method for segmental flow performance in horizontal wells based on node networks[J].Petroleum Drilling Techniques,2019,47(2):93-98.

    • [29] HUANG S,ZHU Y,DING J,et al.A semi-analytical model for predicting inflow profile of long horizontal wells in super-heavy foamy oil reservoir[J].Journal of Petroleum Science and Engineering,2020,195:107952.

    • [30] LI H,TAN Y,JIANG B,et al.A semi-analytical model for predicting inflow profile of horizontal wells in bottom-water gas reservoir[J].Journal of Petroleum Science and Engineering,2018,160:351-362.