en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈掌星(1962-),男,加拿大工程院院士、加拿大皇家科学院院士、中国工程院外籍院士、美国国家工程院院士,博士,博士生导师,研究方向为偏微分方程数值解、科学大型计算、数学模型及工业应用、油藏工程和数值模拟。E-mail:zhachen@ucalgary.ca。

通信作者:

李颖(1991-),女,教授,博士,博士生导师,研究方向为CO2地质封存利用及致密/页岩油气田开发。E-mail: yingingli@163.com。

梁浩(2001-),男,硕士研究生,研究方向为CO2地质封存及利用。E-mail: lianghao200110@163.com。

中图分类号:TE 357.7

文献标识码:A

文章编号:1673-5005(2025)05-0082-11

DOI:10.3969/j.issn.1673-5005.2025.05.007

参考文献 1
郑继荣,张俊,张苗苗.焦作煤田煤层渗透率控制因素及预测[J].煤矿安全,2012,43(10):170-173.ZHENG Jirong,ZHANG Jun,ZHANG Miaomiao.Controlling factors and forecasting of coal seam permeability in Jiaozuo Coalfield[J].Safety in Coal Mines,2012,43(10):170-173.
参考文献 2
FULTON P,PARENTE C,ROGERS B,et al.A laboratory investigation of enhanced recovery of methane from coal by carbon dioxide injection[R].SPE 8930-MS,1980.
参考文献 3
CLARKSON C R,BUSTIN R M.Binary gas adsorption/desorption isotherms:effect of moisture and coal composition upon carbon dioxide selectivity over methane[J].International Journal of Coal Geology,2000,42(4):241-271.
参考文献 4
ZUBER M D.Production characteristics and reservoir analysis of coalbed methane reservoirs[J].International Journal of Coal Geology,1998,38(1/2):27-45.
参考文献 5
REZNIK A A,SINGH P K,FOLEY W L.An analysis of the effect of CO2 injection on the recovery of in situ methane from bituminous coal:an experimental simulation[J].Society of Petroleum Engineers Journal,1984,24(5):521-528.
参考文献 6
张林峰.煤的吸附性能影响因素分析[J].煤炭科技,2019,40(2):26-28.ZHANG Linfeng.Analysis on influencing factors of coal adsorption performance[J].Coal Science & Technology Magazine,2019,40(2):26-28.
参考文献 7
李国欣,贾承造,赵群,等.煤岩气成藏机理与煤系全油气系统[J].石油勘探与开发,2025,52(1):29-43.LI Guoxin,JIA Chengzao,ZHAO Qun,et al.Coal-rock gas accumulation mechanism and the whole petroleum system of coal measures[J].Petroleum Exploration and Development,2025,52(1):29-43.
参考文献 8
朱庆忠,张小东,杨延辉,等.影响沁南—中南煤层气井解吸压力的地质因素及其作用机制[J].中国石油大学学报(自然科学版),2018,42(2):41-49.ZHU Qingzhong,ZHANG Xiaodong,YANG Yanhui,et al.Geological factors affecting desorption pressure of CBM wells in the southern and central-southern Qinshui Basin and their influencing mechanism[J].Journal of China University of Petroleum(Edition of Natural Science),2018,42(2):41-49.
参考文献 9
陈向军.外加水分对煤的瓦斯解吸动力学特性影响研究[D].徐州:中国矿业大学,2013.CHEN Xiangjun.Study on the influence of additional moisture on the dynamic characteristics of gas desorption of coal[D].Xuzhou:China University of Mining and Technology,2013.
参考文献 10
CHEN M Y,CHENG Y P,LI H R,et al.Impact of inherent moisture on the methane adsorption characteristics of coals with various degrees of metamorphism[J].Journal of Natural Gas Science and Engineering,2018,55:312-320.
参考文献 11
陈立伟,边乐,王东杰,等.水分对CH4和CO2在煤中竞争吸附特性影响研究[J].煤炭科学技术,2024,52(4):243-254.CHEN Liwei,BIAN Le,WANG Dongjie,et al.Investigation on the impact of water on the competitive adsorption characteristics of CH4/CO2 in coal[J].Coal Science and Technology,2024,52(4):243-254.
参考文献 12
谢振华,陈绍杰.水分及温度对煤吸附甲烷的影响[J].北京科技大学学报,2007,14(增2):42-44.XIE Zhenhua,CHEN Shaojie.Effect of moisture and temperature to CH4 adsorption of coal[J].Journal of University of Science and Technology Beijing,2007,14(sup2):42-44.
参考文献 13
郭怀广.软硬煤二元气体竞争吸附差异性研究[J].煤矿安全,2019,50(7):37-41.GUO Huaiguang.Study on difference of binary gas competitive adsorption of soft and hard coal[J].Safety in Coal Mines,2019,50(7):37-41.
参考文献 14
周西华,姜鹏飞,白刚,等.CO2驱替CH4置换效率测试与分析[J].中国安全科学学报,2020,30(2):8-13.ZHOU Xihua,JIANG Pengfei,BAI Gang,et al.Test and analysis of displacement efficiency of CO2 replacing CH4[J].China Safety Science Journal,2020,30(2):8-13.
参考文献 15
白刚,姜延航,周西华,等.不同CO2注入温度置换驱替CH4特性试验研究[J].煤炭科学技术,2021,49(5):167-174.BAI Gang,JIANG Yanhang,ZHOU Xihua,et al.Experimental study on characteristics of replacement and displacement of CH4 at different CO2 injection temperatures[J].Coal Science and Technology,2021,49(5):167-174.
参考文献 16
杨宏民,王兆丰,任子阳.煤中二元气体竞争吸附与置换解吸的差异性及其置换规律[J].煤炭学报,2015,40(7):1550-1554.YANG Hongmin,WANG Zhaofeng,REN Ziyang.Differences between competitive adsorption and replacement desorption of binary gases in coal and its replacement laws[J].Journal of China Coal Society,2015,40(7):1550-1554.
参考文献 17
郭广山,王海侨,刘松楠,等.沁水盆地古交区块煤层气水平井产能影响因素分析[J].中国海上油气,2024,36(2):110-118.GUO Guangshan,WANG Haiqiao,LIU Songnan,et al.Analysis of factors influencing the productivity of horizontal wells in Gujiao coalbed methane block of Qinshui Basin[J].China Offshore Oil and Gas,2024,36(2):110-118.
参考文献 18
刘峻麟.低渗煤层CO2-ECBM过程气体吸附解吸-扩散-渗流特征及煤岩物性响应机理[D].淮南:安徽理工大学,2023.LIU Junlin.Characteristics of gas adsorption-desorption-diffusion-seepage and response mechanism of petrophysical properties in low permeability coal during CO2-ECBM process[D].Huainan:Anhui University of Science & Technology,2023.
参考文献 19
牛小兵,范立勇,闫小雄,等.鄂尔多斯盆地煤岩气富集条件及资源潜力[J].石油勘探与开发,2024,51(5):972-985.NIU Xiaobing,FAN Liyong,YAN Xiaoxiong,et al.Enrichment conditions and resource potential of coal-rock gas in Ordos Basin,NW China[J].Petroleum Exploration and Development,2024,51(5):972-985.
参考文献 20
张小东,王康,卢铁,等.ScCO2作用下高阶构造煤吸附热变化特征及机制[J].中国石油大学学报(自然科学版),2025,49(1):81-91.ZHANG Xiaodong,WANG Kang,LU Tie,et al.Characteristics and mechanisms of ScCO2 influencing adsorption heat of high rank tectonic coals[J].Journal of China University of Petroleum(Edition of Natural Science),2025,49(1):81-91.
参考文献 21
MERKEL A,GENSTERBLUM Y,KROOSS B M,et al.Competitive sorption of CH4,CO2 and H2O on natural coals of different rank[J].International Journal of Coal Geology,2015,150:181-192.
参考文献 22
边强,白刚,张潇文.高阶煤孔隙特性及对吸附气体影响的研究[J].山西焦煤科技,2018,42(7):18-23.BIAN Qiang,BAI Gang,ZHANG Xiaowen.Research on high grade coal pore property and influence on adsorption gas[J].Shanxi Coking Coal Science & Technology,2018,42(7):18-23.
参考文献 23
韩文成,李爱芬,方齐,等.含水煤岩超临界等温吸附模型的对比分析[J].煤炭学报,2020,45(12):4095-4103.HAN Wencheng,LI Aifen,FANG Qi,et al.Comparative analysis of isothermal adsorption models for coals with water content under supercritical conditions[J].Journal of China Coal Society,2020,45(12):4095-4103.
参考文献 24
王喜龙.CO2置换驱替煤层CH4规律及应用研究[D].西安:西安科技大学,2020.WANG Xilong.Study on the law and application of CO2 displacement to displace CH4 in coal seam[D].Xi’an:Xi’an University of Science and Technology,2020.
参考文献 25
赵海章.不同温度—压力条件下CO2驱替煤体CH4特性研究[D].兰州:兰州理工大学,2023.ZHAO Haizhang.The research of CO2 displaced coal bodies CH4 under different temperature-pressure conditions[D].Lanzhou:Lanzhou University of Technology,2023.
参考文献 26
梁卫国,张倍宁,黎力,等.注能(以CO2为例)改性驱替开采CH4理论与实验研究[J].煤炭学报,2018,43(10):2839-2847.LIANG Weiguo,ZHANG Beining,LI Li,et al.Theory and experimental study of CBM recovery driven by energy boosting[J].Journal of China Coal Society,2018,43(10):2839-2847.
参考文献 27
姚艳斌,刘大锰.基于核磁共振弛豫谱的煤储层岩石物理与流体表征[J].煤炭科学技术,2016,44(6):14-22.YAO Yanbin,LIU Dameng.Petrophysics and fluid properties characterizations of coalbed methane reservoir by using NMR relaxation time analysis[J].Coal Science and Technology,2016,44(6):14-22.
参考文献 28
YAO Y,LIU D,CHE Y,et al.Petrophysical characterization of coals by low-field nuclear magnetic resonance(NMR)[J].Fuel,2010,89(7):1371-1380.
参考文献 29
孙晓晓,姚艳斌,陈基瑜,等.基于低场核磁共振的煤润湿性分析[J].现代地质,2015,29(1):190-197.SUN Xiaoxiao,YAO Yanbin,CHEN Jiyu,et al.Determination of coal wettability by using low-field nuclear magnetic resonance[J].Geoscience,2015,29(1):190-197.
参考文献 30
SUN X,YAO Y,LIU D,et al.Interactions and exchange of CO2 and H2O in coals:an investigation by low-field NMR relaxation[J].Scientific Reports,2016,6:19919.
参考文献 31
YAO Y,LIU D,XIE S.Quantitative characterization of methane adsorption on coal using a low-field NMR relaxation method[J].International Journal of Coal Geology,2014,131:32-40.
目录contents

    摘要

    模拟现场注入和开采流程,采用在线可视化核磁共振技术开展超临界CO2驱替煤层气(CO2-ECBM)物理模拟试验,系统分析压力、温度、注入量、含水饱和度及孔隙特征对CH4解吸及置换的影响。结果表明:随着注入压力从10 MPa增至20 MPa,CH4单位吸附量下降32.6%,显示压力对CO2竞争吸附能力有显著促进作用;温度升高导致CH4单位吸附量降幅达30%,呈线性负相关;CO2注入量增加使CH4吸附量降低27.6%,呈一定线性关系;含水饱和度增加会削弱CO2驱替效能,吸附量降幅随饱和度升高而递减,表明水分占据吸附点位抑制置换反应;平均孔径增大时CH4吸附量上升但增速趋缓,而CO2驱替效率随孔径增大而增强。试验验证了超临界CO2在深部煤层的优先吸附特性,其竞争置换机制受多因素耦合调控。

    Abstract

    In this study, the field injection and production process were simulated using an online visual nuclear magnetic resonance (NMR) technique to investigate CO2-enhanced coalbed methane recovery (CO2-ECBM) through physical experiments, and the impacts of pressure, temperature, injection volume, water saturation, and pore characteristics on CH4 desorption and displacement were analyzed. The results indicate that increasing injection pressure from 10 MPa to 20 MPa can reduce CH4 adsorption capacity by 32.6%, demonstrating a significant role of pressure on enhancing the competitive adsorption of CO2. Temperature elevation can linearly decrease CH4 adsorption by 30%, while higher CO2 injection volume can reduce CH4 desorption by 27.6%, conforming to a linear relationship. Additionally, increased water saturation can reduce CO2 displacement efficiency, with a decline in CO2 adsorption capacity as water saturation increases, indicating that occupation of adsorption sites by water molecules inhibits the gas displacement process. Larger pore diameters can enhance CH4 adsorption capacity, and CO2 displacement efficiency can be improved progressively as pore size increases. The experimental results confirm the preferential adsorption of supercritical CO2 in deep coal seams, which is governed by multifactorial coupling mechanisms.

  • 二氧化碳(CO2)是一种强效的温室气体,过量的CO2排放对人类生存和地球环境构成威胁。而向煤层中注入CO2提高煤层气采收率(CO2-enhanced coalbed methane,CO2-ECBM)是近年来公认最理想的温室气体减排与煤层气增产技术[1]。早在20世纪80年代,Fulton等[2]就开展了圆柱体型煤在低压(0.3~1.38 MPa)条件下注CO2驱替CH4气体试验,发现CH4的采收率提高了9%~57%。采收率提高的原因之一是CO2驱替了CH4,表现为CO2吸附使CH4解吸[3-5]。CO2置换解吸CH4受水分、温度、压力、煤阶等多种因素影响[6-15],目前较多研究方法采用煤粉进行等温吸附试验[16-23],以验证水分、温度、压力等因素对CO2置换CH4能力的影响,而CO2驱替CH4试验研究更为接近CO2注气开采CH4的现场条件,部分学者采用驱替模拟试验对CO2置换CH4影响因素进行研究[24-26]。通过在线可视化核磁共振技术观察并识别CH4在岩心中的运移吸附情况,能够更为精确地分析CH4在煤岩中的吸附解吸情况[27-31]。笔者以苏里格风险合作区深部煤岩气作为研究对象,基于核磁共振技术进行煤岩注入CO2驱替CH4物理模拟试验研究,分别研究压力、温度、含水饱和度、注入量、孔隙特征等因素对超临界CO2置换解吸CH4的影响。

  • 1 煤岩基本特征

  • 试验样品取自苏里格风险合作区本溪组煤岩,取样深度为3371.57~3606.67 m,取芯煤样平均含水饱和度为39.74%。CH4游离气占比为12.68%~43.19%,平均为27.01%,吸附气含量较高。根据GB/T29172-2012《岩心分析方法》制样标准,将所取岩心均切割处理为直径25 mm、长度50 mm的岩心柱,再对岩心及岩屑进行烘干处理,测量各岩心的孔隙度、渗透率。测试可知,煤岩孔隙度为4.50%~5.86%,平均孔隙度为4.7408%。煤岩渗透率为(0.6639~39.6485)×10-3 μm2,平均渗透率为9.0116×10-3 μm2。根据试验要求,筛选合适的岩心进行样品制备及后续试验。

  • 2 样品和试验方法

  • 2.1 样品制备

  • 不同含水饱和度岩心制备:①将样品置于干燥箱中,于90℃下烘干24 h,并称量干重;②参考取样地层水离子成分及矿化度,配制CaCl2质量浓度约为11.88 g/L,KCl、NaCl质量浓度共约为12.67 g/L的地层水;在真空条件下向岩心加压15 MPa饱和水(重水)48 h,称量饱和水后湿重;④饱和完成后,采用烘干法获取不同含水饱和度的煤岩样品。

  • 采用AniMR-150全直径岩心核磁共振分析系统,测试岩心孔径分布,筛选不同平均孔径煤岩样并根据不同含水饱和度分类,如表1所示,孔径分布如图1所示。

  • 2.2 试验原理

  • CH4气体核磁共振测量的基本理论[26]:当某些原子的核(如氢质子)浸入静磁场中并暴露于第二振荡磁场,可以使用弛豫分布和弛豫时间之间的关系来检测CH4气体的氢原子数。根据岩石NMR测量的基本原理,磁场梯度中CH4T2受到扩散、体积和表面弛豫的影响,有

  • 1T2=1T2B+1T2S+1T2D.
    (1)
  • 其中

  • 1T2D=DγGTE12.

  • 式中,T2B为体弛豫时间;T2S为表面弛豫时间;T2D为扩散弛豫时间;D为CH4的分子扩散系数,25℃时为(1~2)×10-5 m2/s;γ为质子的旋磁比,取2.68×108 rad/(s10.T);G为回波间隔。

  • 表1 不同孔径及含水饱和度煤岩样

  • Table1 Coal samples with different pore sizes and water saturation

  • 图1 ①~⑤号煤岩孔径分布

  • Fig.1 Pore-size distribution of coal samples No.①-⑤

  • 1/T2D的计算值约为(3.91~7.83)×10-7/ms,可以忽略。因此有

  • 1T2=1T2B+1T2S+1T2B+ρSV
    (2)
  • 式中,ρ为表面弛豫率;S/V为孔的表面积与体积比。表面效应对弛豫的贡献程度很重要。在表面效应不显著的情况下,煤中CH4的弛豫仅取决于煤的整体性质;另一方面,表面弛豫的贡献与弛豫率和孔结构直接相关。

  • 2.3 试验设备

  • 煤岩注入CO2驱替CH4物理模拟试验研究采用MacroMR12-150H-I高温高压驱替核磁共振分析仪进行测试分析(图2),作为测量横向弛豫时间(T2)的标准序列,在本研究中使用Carr-Purcell-Meiboom-Gill(CPMG)序列。

  • 图2 MacroMR12-150H-I高温高压驱替核磁共振分析仪

  • Fig.2 MacroMR12-150H-I high-temperature and high-pressure displacement NMR analysis and imaging system

  • 2.4 试验步骤

  • 在正式驱替试验前,需进行前置试验,前置试验目的为得出CH4浓度/质量与T2振幅之间的关系,作为后续驱替试验计算的基准。

  • 2.4.1 前置试验

  • 通过高温高压驱替核磁共振分析仪,对空白容器与干燥岩心进行T2振幅测试,前置试验能够得到CH4质量与T2振幅之间的关系以及岩心中有机质的T2振幅。

  • (1)CH4浓度与T2振幅的关系。

  • ①准备一密闭容器(体积已知),作为承载CH4的样品容器;

  • ②空白容器放置在高温高压驱替核磁共振分析仪中,连接各仪器设备,检查装置气密性;

  • ③容器抽真空;

  • ④根据煤层深度将温度初始值设置为40℃(温度为变量时进行梯度调整);

  • ⑤以一定压力将CH4注入密闭容器中;

  • ⑥采集横向弛豫谱,待压力稳定后记录数据;

  • ⑦改变CH4压力,待压力稳定后记录数据;

  • ⑧处理试验结果,定标不同温度条件下的CH4振幅与质量关系。

  • (2)排除有机质对T2振幅的影响。

  • ①煤岩岩心直径为25 mm、长度为50 mm,将样品抽真空以除去残余气体,并进行干燥处理;

  • ②将岩心装入驱替仪器中,施加围压4 MPa,固定岩心;

  • ③将装置好岩心的驱替仪器放入高温高压驱替核磁共振分析仪中,连接各仪器设备,检查装置气密性;

  • ④根据煤层深度将温度初始值设置为40℃(在进行控制温度变量时梯度调整);

  • ⑤采集横向弛豫谱,观察并记录干燥岩心的T2振幅。

  • 煤样本身所含有机质产生的T2振幅可能与步骤(1)中所测CH4振幅重叠,因此步骤(2)旨在排除煤样本身所含部分有机质对驱替试验中T2图谱的影响(建立煤样基线),以确保试验所得CH4浓度/质量与T2振幅之间关系的准确性。

  • 2.4.2 驱替试验

  • 通过设置出口处的回压阀压力大于7.38 MPa,可保证CO2在煤体中以完全超临界状态流动。试验步骤如下:

  • (1)煤岩岩心直径为25 mm、长度为50 mm,将样品抽真空以除去残余气体,建立岩心含水饱和度为35%(采用重水,避免水中1H对T2振幅的影响);

  • (2)将岩心装入驱替仪器中,对围压和气体压力施加梯度加载(控制围压为22 MPa);

  • (3)将装置好岩心的驱替仪器放入高温高压驱替核磁共振分析仪中,连接各仪器设备,检查装置气密性;

  • (4)根据煤层深度将温度初始值设置为40℃(在进行控制温度变量时梯度调整);

  • (5)模拟实际地层CH4饱和吸附情况,以一定压力(8 MPa)将CH4注入样品中,直至达到吸附平衡(注入CH4气体12 h,以保证CH4在煤样中充分吸附),对饱和CH4的整个过程进行横向弛豫谱的采集;

  • (6)输送管道连接CO2,开始岩心驱替试验(注入压力与回压在进行控制压力变量时梯度调整),分析CO2不同注入条件下对CH4的影响;

  • (7)利用高温高压驱替核磁共振分析仪进行横向弛豫谱的采集,观察CH4的吸附与解吸情况,并在各稳定点记录一次数据;

  • (8)完成该岩心驱替试验后,更换岩心重复步骤(1)~(7)。

  • 2.5 核磁图谱分析方法

  • 煤中CH4的多相性质可分为3部分:①煤微孔或P1峰对应的基质表面吸附的CH4;②P2峰为代表的煤介孔/裂缝中的非吸附/游离CH4;③煤颗粒或样品内自由空间中的非吸附CH4,对应于P3峰。核磁图谱如图3所示。

  • 3 试验结果分析

  • 3.1 前置试验结果

  • CH4振幅-质量标线原理:前置试验得到不同压力下煤样的T2振幅,T2分布的信号幅度与体弛豫密切相关,因此与测量池中存在的1H质子数密切相关,即随着CH4体积分数线性增加,而CH4的体积分数仅取决于温度和压力分数(pV=nRT),且由于一定温度压力条件下CH4体积分数与质量呈线性关系,因此可标定一定温度CH4T2信号量与质量的关系,如图4所示。

  • 图3 岩心饱和CH4T2图谱

  • Fig.3 T2 distribution spectrum of CH4-saturated core sample

  • 图4 40℃条件下CH4振幅与质量标线

  • Fig.4 Amplitude of CH4 and mass calibration line at 40℃

  • 同时,前置试验还需测试煤岩基底T2振幅曲线,如图5所示。后续驱替试验振幅将减去基底的T2振幅进行绘制与计算,以排除煤岩本身有机质对T2振幅的影响。

  • 图5 煤岩基底T2振幅

  • Fig.5 T2 amplitude of coal rock base

  • 探究不同条件下CO2驱替CH4的置换规律,进行不同压力、温度、含水饱和度、注入量、孔径以及回压条件下的驱替试验,并结合前置试验CH4振幅与质量关系,分析计算出各岩心的单位吸附量:

  • ρad=1000MadρCH4Mcore
    (3)
  • 式中,ρad为单位吸附量,mL/g;Mad为CH4吸附气质量,g;ρCH4为CH4密度,0.717g/L;Mcore为岩心干重,g。

  • 3.2 注入压力对CO2置换CH4的影响

  • 设置核磁驱替试验,分析不同CO2注入压力条件下CO2对CH4在煤岩中吸附解吸的影响。CO2注入压力共设置5个测试点,分别测量注入压力为10、12.5、15、17.5、20 MPa时的CH4吸附T2图谱。以保证驱替过程中CO2始终保持超临界态且避免驱替压差的影响,设置注入压力对应回压为7.5、10、12.5、15、17.5 MPa,保持压差为2.5 MPa。CO2注入前的CH4饱和曲线作为初始曲线,初始条件为40℃,8 MPa。CH4吸附T2谱如图6所示。

  • 图6 不同注入压力下的CH4吸附T2

  • Fig.6 T2 distribution spectra of CH4 adsorption under different injection pressures

  • 完成核磁驱替后,各压力条件下对应的吸附/游离CH4吸附量以及煤样单位吸附量计算结果如图7所示。

  • 图7 不同压力下煤岩单位吸附量变化

  • Fig.7 Variation of unit-mass adsorption capacity of coal under different pressures

  • 由图6、7可知,随CO2注入压力增大,岩心中CH4单位吸附量呈下降趋势,由1.319 mL/g降低至0.889 mL/g,降低0.43 mL/g。这表明随压力增大,CO2的吸附能力增大,使更多的吸附态CH4逐渐转变为游离态,并随着驱替采出。

  • 分析不同注入压力下的CH4吸附T2谱发现,随注入压力增大,吸附CH4曲线有较小的左移趋势,这是由于压力作用下,较大孔径中的吸附CH4被CO2置换转变为游离态,CO2分子开始驱替置换较小孔径中的CH4,而CH4因压力作用逐渐吸附进入更小的孔隙中。

  • 3.3 温度对CO2置换CH4的影响

  • 设置核磁驱替试验,分析不同温度条件下CO2对CH4在煤岩中吸附解吸的影响。温度条件共设置5个测试点,不同测量温度下CO2注入后的CH4吸附T2图谱如图8所示。为了保证驱替过程中CO2始终保持超临界态,注入压力设置为20 MPa,回压设置为15 MPa,压差为5 MPa。

  • 图8 不同温度下的CH4吸附T2

  • Fig.8 T2 distribution spectra of CH4 adsorption at different temperatures

  • 计算各温度条件下对应的吸附/游离CH4量以及煤样单位吸附量,结果如图9所示。

  • 图9 不同温度下煤岩单位吸附量变化

  • Fig.9 Variation of unit-mass adsorption capacity of coal at different temperatures

  • 由图8、9可知,随温度升高,岩心中CH4单位吸附量呈下降趋势,由0.960 mL/g降低至0.672 mL/g,降低0.288 mL/g,对其进行拟合,温度与单位吸附量呈一定线性关系。这是由于温度升高,CO2与CH4分子的活性增大,使被吸附的气体分子从煤体表面脱逸出来,CO2与CH4的接触置换面积增大,从而将更多吸附态CH4置换为游离态,表现为CH4单位吸附量下降。且从图8发现,曲线整体呈右移趋势,表明随温度升高,较小孔径中的吸附CH4由较小孔径向较大孔径偏移。且CO2置换CH4过程为吸热过程,温度升高置换效率增大,与试验结果相符。

  • 3.4 注入量对CO2置换CH4的影响

  • 设置核磁驱替试验,分析不同注入量条件下CO2对CH4在煤岩中吸附解吸的影响。在岩心饱和CH4稳定后,通过将出口端关闭,以一定压力注入超临界CO2,以确定对应压力的注入量。试验共设置5个测试点,不同压力时对应注入量下的CH4吸附T2谱如图10所示。

  • 图10 不同注入量下的CH4吸附T2

  • Fig.10 T2 distribution spectra of CH4 adsorption under different injection volumes

  • 各注入量对应的吸附/游离CH4吸附量以及煤样单位吸附量计算结果如图11所示。

  • 图11 不同注入量下煤岩单位吸附量变化

  • Fig.11 Variation of unit-mass adsorption capacity of coal under different injection volumes

  • 由图10、11可知,随注入量升高,岩心中CH4单位吸附量呈下降趋势,单位吸附量由1.379 mL/g降低至0.997 mL/g,降低量为0.382 mL/g。对其进行拟合发现,不同注入量对应注入压力与单位吸附量呈一定线性关系。这是由于在CO2注入量较少时,CO2优先吸附于大孔和介孔,局部置换CH4,随CO2注入量增大,CO2以游离态占据孔隙空间,逐渐对更小孔隙中的CH4进行置换。对比出口端开启与关闭条件下的CH4吸附T2谱,分析发现,在出口端关闭时,CH4吸附T2谱中曲线有较为明显的3个波峰,而出口端打开时,CH4吸附T2谱中曲线为两个波峰,表征煤介孔/裂缝与自由空间的两个波峰明显合并为了一个波峰,这表明在出口端打开条件下,游离态CH4在两者间的连通性较好。

  • 3.5 含水饱和度对CO2置换CH4的影响

  • 设置核磁驱替试验,分析在不同含水饱和度条件下CO2对CH4在煤岩中吸附解吸的影响。共设置5组不同含水饱和度驱替试验,不同含水饱和度岩心饱和CH4稳定后,在注入压力为20 MPa、回压为15 MPa条件下注入CO2,对比CO2注入前后不同含水饱和度条件下CH4吸附情况,结果如图12所示。

  • 图12 驱替前后不同含水饱和度下CH4吸附T2

  • Fig.12 T2 distribution spectra of CH4 adsorption with different water saturations before and after displacement

  • 各含水饱和度对应的吸附/游离CH4吸附量以及煤样单位吸附量计算结果如图13所示。

  • 由图12、13可知,随含水饱和度增加,CH4单位吸附量减小,25%含水饱和度条件下岩心单位吸附量最大,为1.840 mL/g,45%含水饱和度条件下岩心单位吸附量最小,为1.131 mL/g,这是由于煤和CH4之间结合主要依靠范德华力,而煤跟水分子之间的结合是范徳华力和氢键共同作用的结果,氢键的能量大于范徳华力。所以当水分子和气体分子竞争煤中的吸附位时,处于优势地位。

  • 图13 驱替前煤岩单位吸附量变化

  • Fig.13 Variation of unit-mass adsorption capacity of coal before displacement

  • 随含水饱和度增加,水分子占据吸附点位增加,CH4分子所能占据的吸附点位减少,且由于水分子增多,部分孔隙被封堵,孔隙连通性降低,也会导致CH4分子吸附量减小。由图13可知,随含水饱和度增大,CH4单位吸附量逐渐下降,趋势由快变缓,对曲线进行拟合发现其符合二元多项式关系。这是由于在驱替饱和CH4过程中,尽管水分子相对CH4分子为优势吸附,但随CH4驱替饱和的进行,部分水分子随CH4驱替排出,且含水量较高时,水分子在岩心中占据吸附点位逐渐趋近于饱和,导致在随含水饱和度升高时,CH4单位吸附量下降趋势逐渐放缓(图14)。

  • 图14 CO2驱替后不同含水饱和度煤岩CH4 吸附量降低幅度

  • Fig.14 Reduction extent of CH4 adsorption capacity in coal with different water saturations after CO2 displacement

  • 在CO2注入驱替后,由图14可知,随着含水饱和度由25%增至45%,煤岩单位吸附量降幅从29.89%递减至20.95%,吸附量减少值由0.55 mL/g逐渐降至0.237 mL/g;对比不同含水饱和度条件下,在CO2驱替CH4稳定时,煤岩单位吸附量下降幅度逐渐减小,即随含水饱和度增加,CO2驱替置换CH4能力减弱。这是由于较高含水饱和度时水分可能封堵孔隙喉道,且煤体吸附能力由大到小排序为H2O、CO2、CH4,随含水饱和度增大,水分子占据的CO2吸附点位要多于占据的CH4吸附点位,对CO2吸附能力的影响要大于对CH4吸附能力的影响,同时CO2部分溶于水中,难与吸附态CH4接触及转换为游离态。

  • 3.6 孔径对CO2置换CH4的影响

  • 设置核磁驱替试验,分析不同岩心孔径条件下CO2对CH4在煤岩中吸附解吸的影响。共设置5组不同孔径驱替试验,不同孔径岩心饱和CH4稳定后,在注入压力为20 MPa、回压为15 MPa条件下注入CO2,对比CO2注入前后不同孔径条件下CH4吸附情况。CH4吸附T2谱如图15所示。

  • 图15 驱替前后不同孔径下CH4吸附T2

  • Fig.15 T2 distribution spectra of CH4 adsorption in different pore sizes before and after displacement

  • 各孔径对应的吸附/游离CH4吸附量以及煤样单位吸附量计算结果如图16所示。

  • 图16 驱替前不同孔径煤岩单位吸附量变化

  • Fig.16 Variation of unit-mass adsorption capacity in coal with different pore sizesbefore displacement

  • 由图16可知,随平均孔径增大,CH4单位吸附量上升趋势由快变缓,对曲线进行拟合发现其符合二元多项式关系。这是由于CH4吸附受孔径和微孔体积的综合影响。CH4气体分子动力学直径为0.38 nm,其主要吸附在较小孔径中,在小孔径中除吸附外还可能产生部分堆叠,结合孔径分布图发现,尽管平均孔径增大,微孔体积增大,但较大孔径占比相对增大,CH4分子主要占据的微小孔径比例下降,从而导致CH4单位吸附量上升幅度较低(图17)。

  • 图17 CO2驱替后不同孔径煤岩CH4吸附量降低幅度

  • Fig.17 Reduction extent of adsorbed CH4 in coal with different pore sizes after CO2 displacement

  • 在CO2注入驱替后,随着平均孔径由3.86 nm增至7.93 nm,煤岩单位吸附量降幅从25.47%递增至31.73%。

  • 对比不同孔径条件下,在CO2驱替CH4时,煤岩单位吸附量下降幅度逐渐增大,但增大比例随孔径增大而减小。这是由于在较小孔径中CO2与CH4分子竞争选择性更强,CO2与CH4接触面积较大,因此在较小孔径中CO2置换CH4能力更大,反映在图表中为吸附态CH4下降幅度增大;在较大孔径中,煤岩对CO2与CH4吸附选择性逐渐降低,因此导致CO2对CH4置换能力降低,反映在图表中即为吸附态CH4降低幅度减小。因此CO2与CH4的竞争吸附能力与孔径、微孔体积等多方面因素相关。

  • 4 讨论

  • (1)压力对竞争吸附的调控机制。试验表明,随着注入压力从10 MPa增至20 MPa,CH4单位吸附量下降32.6%(1.319 mL/g降至0.889 mL/g),且压力与吸附量呈多项式关系(R2=0.9953)。这一现象可从吸附势理论解释:CO2分子动力学直径(0.33 nm)小于CH4(0.38 nm),在高压下更易进入煤基质微孔(小于2 nm),通过范德华力优先占据吸附点位,从而置换出CH4分子。此外,压力升高增强了CO2的扩散能力,加速其在煤体中的运移与接触面积,这与Clarkson等[3]提出的二元气体吸附竞争模型一致。然而,本研究中吸附量降幅高于部分文献(如Zuber[4]),可能源于试验采用超临界CO2(密度接近液态),其吸附热显著高于气态CO2,进一步强化了竞争效应。

  • (2)温度对竞争吸附的相对作用。温度升高导致CH4单位吸附量线性下降(R2=0.9972),40℃至60℃范围内降幅达30%。根据Langmuir吸附理论,温度升高削弱了气体分子与煤表面的物理吸附作用,促使CH4脱附。同时,CO2与CH4分子动能增加,碰撞频率提升,加速了置换反应速率。值得注意的是,超临界CO2的扩散系数随温度升高而增大,可能进一步促进其在煤体中的渗透。然而,温度对置换效率的提升存在上限:当温度接近煤阶热解阈值时,煤基质结构可能发生不可逆改变(如微孔收缩),反而抑制气体吸附[28]。因此实际工程中需结合煤阶特性优化温度参数。

  • (3)水分对气体吸附的抑制作用及其非线性特征。含水饱和度从25%增至45%时,CO2驱替效能降幅由29.89%递减至20.95%,表明水分对置换反应的抑制作用随饱和度升高而升高。水分子通过氢键优先占据煤表面含氧官能团(如羟基),形成竞争性吸附层,阻碍CO2与CH4接触。然而,高含水条件下,水分可能以毛细管液桥形式封堵孔隙喉道,降低气体有效渗透率,导致CO2驱替路径受限[9],含水饱和度试验结果的非线性降幅(R2=0.9985)揭示了水分影响的复杂性:低饱和度时,吸附点位竞争占主导;高饱和度时,孔隙堵塞效应更为显著。这一发现与杨宏民等[16]提出的水分双阶段影响模型相吻合。

  • (4)孔隙结构对气体吸附-置换的影响。平均孔径从3.86 nm增至7.93 nm时,CH4吸附量增速趋缓(R2=0.9323),而CO2驱替效率提升31.73%。较小孔径(小于5 nm)中,高比表面积强化了CH4的物理吸附,但CO2因其分子特性更易渗透微孔,置换效率更高;较大孔径(大于5 nm)中,游离态CH4占比增加,CO2通过气驱机制(而非吸附竞争)主导置换过程。核磁T2谱显示,驱替后吸附峰左移(微孔CH4减少)与游离峰合并(大孔连通性增强),印证了孔隙尺度下吸附-渗流协同机制。此结果与Yao等[28]基于NMR的煤储层表征结论一致,但本研究发现CO2在介孔(2~50 nm)中的驱替效率被低估,可能因试验未考虑煤基质收缩效应。

  • 5 结论

  • (1)随CO2注入压力升高(10~20 MPa),CH4单位吸附量显著下降32.6%,高压增强CO2分子在微孔中的竞争吸附能力,并通过扩散加速置换过程。

  • (2)温度升高(40~60℃)导致CH4单位吸附量线性降低30%,这是因为热力学作用削弱了CH4的物理吸附,同时提升了CH4与CO2的分子动能与置换速率,CO2置换CH4能力提高,但需避免煤基质热解阈值以维持结构稳定性。

  • (3)CO2注入量增加使CH4吸附量降低27.6%,呈线性负相关(R2=0.994),高压注入促进CO2覆盖更多吸附点位,且随注入量增大,CO2逐渐扩散进入更小孔隙中进行置换。

  • (4)含水饱和度(25%~45%时)增加,抑制CO2驱替效能,降幅由29.89%递减至20.95%,水分优先占据吸附点位并封堵孔隙。

  • (5)较小孔径(小于5 nm)中高比表面积强化CH4吸附,但CO2更易置换微孔CH4;平均孔径(3.86~7.93 nm)增大时,CO2驱替效率提升31.73%,大孔可通过气驱机制增强游离态CH4开采。

  • (6)CO2驱替CH4的效率受压力、温度、注入量、含水饱和度及孔隙特征的协同影响,超临界CO2的优先吸附特性在高压、适温、低含水及小孔径条件下表现最佳,在实际工程中需综合参数匹配以实现高效采收与封存。

  • 参考文献

    • [1] 郑继荣,张俊,张苗苗.焦作煤田煤层渗透率控制因素及预测[J].煤矿安全,2012,43(10):170-173.ZHENG Jirong,ZHANG Jun,ZHANG Miaomiao.Controlling factors and forecasting of coal seam permeability in Jiaozuo Coalfield[J].Safety in Coal Mines,2012,43(10):170-173.

    • [2] FULTON P,PARENTE C,ROGERS B,et al.A laboratory investigation of enhanced recovery of methane from coal by carbon dioxide injection[R].SPE 8930-MS,1980.

    • [3] CLARKSON C R,BUSTIN R M.Binary gas adsorption/desorption isotherms:effect of moisture and coal composition upon carbon dioxide selectivity over methane[J].International Journal of Coal Geology,2000,42(4):241-271.

    • [4] ZUBER M D.Production characteristics and reservoir analysis of coalbed methane reservoirs[J].International Journal of Coal Geology,1998,38(1/2):27-45.

    • [5] REZNIK A A,SINGH P K,FOLEY W L.An analysis of the effect of CO2 injection on the recovery of in situ methane from bituminous coal:an experimental simulation[J].Society of Petroleum Engineers Journal,1984,24(5):521-528.

    • [6] 张林峰.煤的吸附性能影响因素分析[J].煤炭科技,2019,40(2):26-28.ZHANG Linfeng.Analysis on influencing factors of coal adsorption performance[J].Coal Science & Technology Magazine,2019,40(2):26-28.

    • [7] 李国欣,贾承造,赵群,等.煤岩气成藏机理与煤系全油气系统[J].石油勘探与开发,2025,52(1):29-43.LI Guoxin,JIA Chengzao,ZHAO Qun,et al.Coal-rock gas accumulation mechanism and the whole petroleum system of coal measures[J].Petroleum Exploration and Development,2025,52(1):29-43.

    • [8] 朱庆忠,张小东,杨延辉,等.影响沁南—中南煤层气井解吸压力的地质因素及其作用机制[J].中国石油大学学报(自然科学版),2018,42(2):41-49.ZHU Qingzhong,ZHANG Xiaodong,YANG Yanhui,et al.Geological factors affecting desorption pressure of CBM wells in the southern and central-southern Qinshui Basin and their influencing mechanism[J].Journal of China University of Petroleum(Edition of Natural Science),2018,42(2):41-49.

    • [9] 陈向军.外加水分对煤的瓦斯解吸动力学特性影响研究[D].徐州:中国矿业大学,2013.CHEN Xiangjun.Study on the influence of additional moisture on the dynamic characteristics of gas desorption of coal[D].Xuzhou:China University of Mining and Technology,2013.

    • [10] CHEN M Y,CHENG Y P,LI H R,et al.Impact of inherent moisture on the methane adsorption characteristics of coals with various degrees of metamorphism[J].Journal of Natural Gas Science and Engineering,2018,55:312-320.

    • [11] 陈立伟,边乐,王东杰,等.水分对CH4和CO2在煤中竞争吸附特性影响研究[J].煤炭科学技术,2024,52(4):243-254.CHEN Liwei,BIAN Le,WANG Dongjie,et al.Investigation on the impact of water on the competitive adsorption characteristics of CH4/CO2 in coal[J].Coal Science and Technology,2024,52(4):243-254.

    • [12] 谢振华,陈绍杰.水分及温度对煤吸附甲烷的影响[J].北京科技大学学报,2007,14(增2):42-44.XIE Zhenhua,CHEN Shaojie.Effect of moisture and temperature to CH4 adsorption of coal[J].Journal of University of Science and Technology Beijing,2007,14(sup2):42-44.

    • [13] 郭怀广.软硬煤二元气体竞争吸附差异性研究[J].煤矿安全,2019,50(7):37-41.GUO Huaiguang.Study on difference of binary gas competitive adsorption of soft and hard coal[J].Safety in Coal Mines,2019,50(7):37-41.

    • [14] 周西华,姜鹏飞,白刚,等.CO2驱替CH4置换效率测试与分析[J].中国安全科学学报,2020,30(2):8-13.ZHOU Xihua,JIANG Pengfei,BAI Gang,et al.Test and analysis of displacement efficiency of CO2 replacing CH4[J].China Safety Science Journal,2020,30(2):8-13.

    • [15] 白刚,姜延航,周西华,等.不同CO2注入温度置换驱替CH4特性试验研究[J].煤炭科学技术,2021,49(5):167-174.BAI Gang,JIANG Yanhang,ZHOU Xihua,et al.Experimental study on characteristics of replacement and displacement of CH4 at different CO2 injection temperatures[J].Coal Science and Technology,2021,49(5):167-174.

    • [16] 杨宏民,王兆丰,任子阳.煤中二元气体竞争吸附与置换解吸的差异性及其置换规律[J].煤炭学报,2015,40(7):1550-1554.YANG Hongmin,WANG Zhaofeng,REN Ziyang.Differences between competitive adsorption and replacement desorption of binary gases in coal and its replacement laws[J].Journal of China Coal Society,2015,40(7):1550-1554.

    • [17] 郭广山,王海侨,刘松楠,等.沁水盆地古交区块煤层气水平井产能影响因素分析[J].中国海上油气,2024,36(2):110-118.GUO Guangshan,WANG Haiqiao,LIU Songnan,et al.Analysis of factors influencing the productivity of horizontal wells in Gujiao coalbed methane block of Qinshui Basin[J].China Offshore Oil and Gas,2024,36(2):110-118.

    • [18] 刘峻麟.低渗煤层CO2-ECBM过程气体吸附解吸-扩散-渗流特征及煤岩物性响应机理[D].淮南:安徽理工大学,2023.LIU Junlin.Characteristics of gas adsorption-desorption-diffusion-seepage and response mechanism of petrophysical properties in low permeability coal during CO2-ECBM process[D].Huainan:Anhui University of Science & Technology,2023.

    • [19] 牛小兵,范立勇,闫小雄,等.鄂尔多斯盆地煤岩气富集条件及资源潜力[J].石油勘探与开发,2024,51(5):972-985.NIU Xiaobing,FAN Liyong,YAN Xiaoxiong,et al.Enrichment conditions and resource potential of coal-rock gas in Ordos Basin,NW China[J].Petroleum Exploration and Development,2024,51(5):972-985.

    • [20] 张小东,王康,卢铁,等.ScCO2作用下高阶构造煤吸附热变化特征及机制[J].中国石油大学学报(自然科学版),2025,49(1):81-91.ZHANG Xiaodong,WANG Kang,LU Tie,et al.Characteristics and mechanisms of ScCO2 influencing adsorption heat of high rank tectonic coals[J].Journal of China University of Petroleum(Edition of Natural Science),2025,49(1):81-91.

    • [21] MERKEL A,GENSTERBLUM Y,KROOSS B M,et al.Competitive sorption of CH4,CO2 and H2O on natural coals of different rank[J].International Journal of Coal Geology,2015,150:181-192.

    • [22] 边强,白刚,张潇文.高阶煤孔隙特性及对吸附气体影响的研究[J].山西焦煤科技,2018,42(7):18-23.BIAN Qiang,BAI Gang,ZHANG Xiaowen.Research on high grade coal pore property and influence on adsorption gas[J].Shanxi Coking Coal Science & Technology,2018,42(7):18-23.

    • [23] 韩文成,李爱芬,方齐,等.含水煤岩超临界等温吸附模型的对比分析[J].煤炭学报,2020,45(12):4095-4103.HAN Wencheng,LI Aifen,FANG Qi,et al.Comparative analysis of isothermal adsorption models for coals with water content under supercritical conditions[J].Journal of China Coal Society,2020,45(12):4095-4103.

    • [24] 王喜龙.CO2置换驱替煤层CH4规律及应用研究[D].西安:西安科技大学,2020.WANG Xilong.Study on the law and application of CO2 displacement to displace CH4 in coal seam[D].Xi’an:Xi’an University of Science and Technology,2020.

    • [25] 赵海章.不同温度—压力条件下CO2驱替煤体CH4特性研究[D].兰州:兰州理工大学,2023.ZHAO Haizhang.The research of CO2 displaced coal bodies CH4 under different temperature-pressure conditions[D].Lanzhou:Lanzhou University of Technology,2023.

    • [26] 梁卫国,张倍宁,黎力,等.注能(以CO2为例)改性驱替开采CH4理论与实验研究[J].煤炭学报,2018,43(10):2839-2847.LIANG Weiguo,ZHANG Beining,LI Li,et al.Theory and experimental study of CBM recovery driven by energy boosting[J].Journal of China Coal Society,2018,43(10):2839-2847.

    • [27] 姚艳斌,刘大锰.基于核磁共振弛豫谱的煤储层岩石物理与流体表征[J].煤炭科学技术,2016,44(6):14-22.YAO Yanbin,LIU Dameng.Petrophysics and fluid properties characterizations of coalbed methane reservoir by using NMR relaxation time analysis[J].Coal Science and Technology,2016,44(6):14-22.

    • [28] YAO Y,LIU D,CHE Y,et al.Petrophysical characterization of coals by low-field nuclear magnetic resonance(NMR)[J].Fuel,2010,89(7):1371-1380.

    • [29] 孙晓晓,姚艳斌,陈基瑜,等.基于低场核磁共振的煤润湿性分析[J].现代地质,2015,29(1):190-197.SUN Xiaoxiao,YAO Yanbin,CHEN Jiyu,et al.Determination of coal wettability by using low-field nuclear magnetic resonance[J].Geoscience,2015,29(1):190-197.

    • [30] SUN X,YAO Y,LIU D,et al.Interactions and exchange of CO2 and H2O in coals:an investigation by low-field NMR relaxation[J].Scientific Reports,2016,6:19919.

    • [31] YAO Y,LIU D,XIE S.Quantitative characterization of methane adsorption on coal using a low-field NMR relaxation method[J].International Journal of Coal Geology,2014,131:32-40.

  • 参考文献

    • [1] 郑继荣,张俊,张苗苗.焦作煤田煤层渗透率控制因素及预测[J].煤矿安全,2012,43(10):170-173.ZHENG Jirong,ZHANG Jun,ZHANG Miaomiao.Controlling factors and forecasting of coal seam permeability in Jiaozuo Coalfield[J].Safety in Coal Mines,2012,43(10):170-173.

    • [2] FULTON P,PARENTE C,ROGERS B,et al.A laboratory investigation of enhanced recovery of methane from coal by carbon dioxide injection[R].SPE 8930-MS,1980.

    • [3] CLARKSON C R,BUSTIN R M.Binary gas adsorption/desorption isotherms:effect of moisture and coal composition upon carbon dioxide selectivity over methane[J].International Journal of Coal Geology,2000,42(4):241-271.

    • [4] ZUBER M D.Production characteristics and reservoir analysis of coalbed methane reservoirs[J].International Journal of Coal Geology,1998,38(1/2):27-45.

    • [5] REZNIK A A,SINGH P K,FOLEY W L.An analysis of the effect of CO2 injection on the recovery of in situ methane from bituminous coal:an experimental simulation[J].Society of Petroleum Engineers Journal,1984,24(5):521-528.

    • [6] 张林峰.煤的吸附性能影响因素分析[J].煤炭科技,2019,40(2):26-28.ZHANG Linfeng.Analysis on influencing factors of coal adsorption performance[J].Coal Science & Technology Magazine,2019,40(2):26-28.

    • [7] 李国欣,贾承造,赵群,等.煤岩气成藏机理与煤系全油气系统[J].石油勘探与开发,2025,52(1):29-43.LI Guoxin,JIA Chengzao,ZHAO Qun,et al.Coal-rock gas accumulation mechanism and the whole petroleum system of coal measures[J].Petroleum Exploration and Development,2025,52(1):29-43.

    • [8] 朱庆忠,张小东,杨延辉,等.影响沁南—中南煤层气井解吸压力的地质因素及其作用机制[J].中国石油大学学报(自然科学版),2018,42(2):41-49.ZHU Qingzhong,ZHANG Xiaodong,YANG Yanhui,et al.Geological factors affecting desorption pressure of CBM wells in the southern and central-southern Qinshui Basin and their influencing mechanism[J].Journal of China University of Petroleum(Edition of Natural Science),2018,42(2):41-49.

    • [9] 陈向军.外加水分对煤的瓦斯解吸动力学特性影响研究[D].徐州:中国矿业大学,2013.CHEN Xiangjun.Study on the influence of additional moisture on the dynamic characteristics of gas desorption of coal[D].Xuzhou:China University of Mining and Technology,2013.

    • [10] CHEN M Y,CHENG Y P,LI H R,et al.Impact of inherent moisture on the methane adsorption characteristics of coals with various degrees of metamorphism[J].Journal of Natural Gas Science and Engineering,2018,55:312-320.

    • [11] 陈立伟,边乐,王东杰,等.水分对CH4和CO2在煤中竞争吸附特性影响研究[J].煤炭科学技术,2024,52(4):243-254.CHEN Liwei,BIAN Le,WANG Dongjie,et al.Investigation on the impact of water on the competitive adsorption characteristics of CH4/CO2 in coal[J].Coal Science and Technology,2024,52(4):243-254.

    • [12] 谢振华,陈绍杰.水分及温度对煤吸附甲烷的影响[J].北京科技大学学报,2007,14(增2):42-44.XIE Zhenhua,CHEN Shaojie.Effect of moisture and temperature to CH4 adsorption of coal[J].Journal of University of Science and Technology Beijing,2007,14(sup2):42-44.

    • [13] 郭怀广.软硬煤二元气体竞争吸附差异性研究[J].煤矿安全,2019,50(7):37-41.GUO Huaiguang.Study on difference of binary gas competitive adsorption of soft and hard coal[J].Safety in Coal Mines,2019,50(7):37-41.

    • [14] 周西华,姜鹏飞,白刚,等.CO2驱替CH4置换效率测试与分析[J].中国安全科学学报,2020,30(2):8-13.ZHOU Xihua,JIANG Pengfei,BAI Gang,et al.Test and analysis of displacement efficiency of CO2 replacing CH4[J].China Safety Science Journal,2020,30(2):8-13.

    • [15] 白刚,姜延航,周西华,等.不同CO2注入温度置换驱替CH4特性试验研究[J].煤炭科学技术,2021,49(5):167-174.BAI Gang,JIANG Yanhang,ZHOU Xihua,et al.Experimental study on characteristics of replacement and displacement of CH4 at different CO2 injection temperatures[J].Coal Science and Technology,2021,49(5):167-174.

    • [16] 杨宏民,王兆丰,任子阳.煤中二元气体竞争吸附与置换解吸的差异性及其置换规律[J].煤炭学报,2015,40(7):1550-1554.YANG Hongmin,WANG Zhaofeng,REN Ziyang.Differences between competitive adsorption and replacement desorption of binary gases in coal and its replacement laws[J].Journal of China Coal Society,2015,40(7):1550-1554.

    • [17] 郭广山,王海侨,刘松楠,等.沁水盆地古交区块煤层气水平井产能影响因素分析[J].中国海上油气,2024,36(2):110-118.GUO Guangshan,WANG Haiqiao,LIU Songnan,et al.Analysis of factors influencing the productivity of horizontal wells in Gujiao coalbed methane block of Qinshui Basin[J].China Offshore Oil and Gas,2024,36(2):110-118.

    • [18] 刘峻麟.低渗煤层CO2-ECBM过程气体吸附解吸-扩散-渗流特征及煤岩物性响应机理[D].淮南:安徽理工大学,2023.LIU Junlin.Characteristics of gas adsorption-desorption-diffusion-seepage and response mechanism of petrophysical properties in low permeability coal during CO2-ECBM process[D].Huainan:Anhui University of Science & Technology,2023.

    • [19] 牛小兵,范立勇,闫小雄,等.鄂尔多斯盆地煤岩气富集条件及资源潜力[J].石油勘探与开发,2024,51(5):972-985.NIU Xiaobing,FAN Liyong,YAN Xiaoxiong,et al.Enrichment conditions and resource potential of coal-rock gas in Ordos Basin,NW China[J].Petroleum Exploration and Development,2024,51(5):972-985.

    • [20] 张小东,王康,卢铁,等.ScCO2作用下高阶构造煤吸附热变化特征及机制[J].中国石油大学学报(自然科学版),2025,49(1):81-91.ZHANG Xiaodong,WANG Kang,LU Tie,et al.Characteristics and mechanisms of ScCO2 influencing adsorption heat of high rank tectonic coals[J].Journal of China University of Petroleum(Edition of Natural Science),2025,49(1):81-91.

    • [21] MERKEL A,GENSTERBLUM Y,KROOSS B M,et al.Competitive sorption of CH4,CO2 and H2O on natural coals of different rank[J].International Journal of Coal Geology,2015,150:181-192.

    • [22] 边强,白刚,张潇文.高阶煤孔隙特性及对吸附气体影响的研究[J].山西焦煤科技,2018,42(7):18-23.BIAN Qiang,BAI Gang,ZHANG Xiaowen.Research on high grade coal pore property and influence on adsorption gas[J].Shanxi Coking Coal Science & Technology,2018,42(7):18-23.

    • [23] 韩文成,李爱芬,方齐,等.含水煤岩超临界等温吸附模型的对比分析[J].煤炭学报,2020,45(12):4095-4103.HAN Wencheng,LI Aifen,FANG Qi,et al.Comparative analysis of isothermal adsorption models for coals with water content under supercritical conditions[J].Journal of China Coal Society,2020,45(12):4095-4103.

    • [24] 王喜龙.CO2置换驱替煤层CH4规律及应用研究[D].西安:西安科技大学,2020.WANG Xilong.Study on the law and application of CO2 displacement to displace CH4 in coal seam[D].Xi’an:Xi’an University of Science and Technology,2020.

    • [25] 赵海章.不同温度—压力条件下CO2驱替煤体CH4特性研究[D].兰州:兰州理工大学,2023.ZHAO Haizhang.The research of CO2 displaced coal bodies CH4 under different temperature-pressure conditions[D].Lanzhou:Lanzhou University of Technology,2023.

    • [26] 梁卫国,张倍宁,黎力,等.注能(以CO2为例)改性驱替开采CH4理论与实验研究[J].煤炭学报,2018,43(10):2839-2847.LIANG Weiguo,ZHANG Beining,LI Li,et al.Theory and experimental study of CBM recovery driven by energy boosting[J].Journal of China Coal Society,2018,43(10):2839-2847.

    • [27] 姚艳斌,刘大锰.基于核磁共振弛豫谱的煤储层岩石物理与流体表征[J].煤炭科学技术,2016,44(6):14-22.YAO Yanbin,LIU Dameng.Petrophysics and fluid properties characterizations of coalbed methane reservoir by using NMR relaxation time analysis[J].Coal Science and Technology,2016,44(6):14-22.

    • [28] YAO Y,LIU D,CHE Y,et al.Petrophysical characterization of coals by low-field nuclear magnetic resonance(NMR)[J].Fuel,2010,89(7):1371-1380.

    • [29] 孙晓晓,姚艳斌,陈基瑜,等.基于低场核磁共振的煤润湿性分析[J].现代地质,2015,29(1):190-197.SUN Xiaoxiao,YAO Yanbin,CHEN Jiyu,et al.Determination of coal wettability by using low-field nuclear magnetic resonance[J].Geoscience,2015,29(1):190-197.

    • [30] SUN X,YAO Y,LIU D,et al.Interactions and exchange of CO2 and H2O in coals:an investigation by low-field NMR relaxation[J].Scientific Reports,2016,6:19919.

    • [31] YAO Y,LIU D,XIE S.Quantitative characterization of methane adsorption on coal using a low-field NMR relaxation method[J].International Journal of Coal Geology,2014,131:32-40.