en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘华(1977-),女,教授,博士,研究方向为油气藏形成机理与分布规律。E-mail: liuhua77@upc.edu.cn。

通信作者:

刘华(1977-),女,教授,博士,研究方向为油气藏形成机理与分布规律。E-mail: liuhua77@upc.edu.cn。

中图分类号:TE 122.3

文献标识码:A

文章编号:1673-5005(2025)05-0031-13

DOI:10.3969/j.issn.1673-5005.2025.05.003

参考文献 1
李斌,姜潇俊,赵星星,等.塔里木盆地台盆过渡带多相态油气藏成因及差异富集模式:以玉科地区奥陶系为例[J].石油学报,2023,44(5):794-808.LI Bin,JIANG Xiaojun,ZHAO Xingxing,et al.Genesis and differential enrichment model of multiphase reservoirs in platform-basin transitional zone of Tarim Basin:a case study of the Ordovician in Yuke area[J].Acta Petrolei Sinica,2023,44(5):794-808.
参考文献 2
贾承造.含油气盆地深层—超深层油气勘探开发的科学技术问题[J].中国石油大学学报(自然科学版),2023,47(5):1-12.JIA Chengzao.Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(5):1-12.
参考文献 3
彭平安,贾承造.深层烃源演化与原生轻质油/凝析油气资源潜力[J].石油学报,2021,42(12):1543-1555.PENG Ping’an,JIA Chengzao.Evolution of deep source rock and resource potential of primary light oil and condensate[J].Acta Petrolei Sinica,2021,42(12):1543-1555.
参考文献 4
HOU M G,ZHA M,DING X J,et al.Source and accumulation process of Jurassic biodegraded oil in the Eastern Junggar Basin,NW China[J].Petroleum Science,2021,18(4):1033-1046.
参考文献 5
孙志道.油气藏流体类型判别方法[J].石油勘探与开发,1996,23(1):69-75.SUN Zhidao.Identification method of fluid types in oil and gas reservoirs[J].Petroleum Exploration and Development,1996,23(1):69-75.
参考文献 6
王金铎,曾治平,徐冰冰,等.准噶尔盆地沙湾凹陷二叠系上乌尔禾组流体相态及油气藏类型[J].岩性油气藏,2024,36(1):23-31.WANG Jinduo,ZENG Zhiping,XU Bingbing,et al.Fluid phase and hydrocarbon reservoir types of Permian Upper Urho Formation in Shawan Sag,Junggar Basin[J].Lithologic Reservoirs,2024,36(1):23-31.
参考文献 7
薛永安.我国东部油型盆地深层油气藏中CO2气体对相态变化有什么样的控制作用?[J].地球科学,2022,47(10):3887-3888.XUE Yongan.What kind of control effect does CO2 gas have on phase change in deep reservoirs in oil-type basins in Eastern China?[J].Earth Science,2022,47(10):3887-3888.
参考文献 8
黄越义,廖玉宏,陈承声,等.塔里木盆地顺南1井和顺南4井油气相态演化的数值模拟与预测[J].石油与天然气地质,2023,44(1):138-149.HUANG Yueyi,LIAO Yuhong,CHEN Chengsheng,et al.Numerical simulation and prediction of hydrocarbon phase evolution of wells Shunnan 1 and 4,Tarim Basin[J].Oil & Gas Geology,2023,44(1):138-149.
参考文献 9
张水昌,朱光有,杨海军,等.塔里木盆地北部奥陶系油气相态及其成因分析[J].岩石学报,2011,27(8):2447-2460.ZHANG Shuichang,ZHU Guangyou,YANG Haijun,et al.The phases of Ordovician hydrocarbon and their origin in the Tabei uplift,Tarim Basin[J].Acta Petrologica Sinica,2011,27(8):2447-2460.
参考文献 10
DANESH A.PVT and phase behaviour of petroleum reservoir fluids[J].Developments in Petroleum Science,1998,11(1):1-3.
参考文献 11
王飞龙,燕歌,陈容涛,等.渤中19-6地区深层油气赋存相态差异性及其成因机制[J].中国海上油气,2021,33(3):58-68.WANG Feilong,YAN Ge,CHEN Rongtao,et al.Difference and its genetic mechanism of deep hydrocarbon occurrence phases in BZ19-6 area[J].China Offshore Oil and Gas,2021,33(3):58-68.
参考文献 12
任战利,崔军平,祁凯,等.深层、超深层温度及热演化历史对油气相态与生烃历史的控制作用[J].天然气工业,2020,40(2):22-30.REN Zhanli,CUI Junping,QI Kai,et al.Control effects of temperature and thermal evolution history of deep and ultra-deep layers on hydrocarbon phase state and hydrocarbon generation history[J].Natural Gas Industry,2020,40(2):22-30.
参考文献 13
CHEN C,WANG Y,BEAGLE J R,et al.Reconstruction of the evolution of deep fluids in light oil reservoirs in the Central Tarim Basin by using PVT simulation and basin modeling[J].Marine and Petroleum Geology,2019,107:116-126.
参考文献 14
WANG Y,ZHANG S,WANG F,et al.Thermal cracking history by laboratory kinetic simulation of Paleozoic oil in eastern Tarim Basin,NW China,implications for the occurrence of residual oil reservoirs[J].Organic Geochemistry,2006,37(12):1803-1815.
参考文献 15
段威,田金强,李三忠,等.南海珠江口盆地惠州凹陷东南缘远源凸起带油气成因及来源[J].地学前缘,2022,29(5):176-187.DUAN Wei,TIAN Jinqiang,LI Sanzhong,et al.Crude oil in the uplifts of the Huizhou depression,Pearl River Mouth Basin,South China Sea:source and formation mechanisms[J].Earth Science Frontiers,2022,29(5):176-187.
参考文献 16
CHENG P,XIAO X M,TIAN H,et al.Source controls on geochemical characteristics of crude oils from the Qionghai Uplift in the western Pearl River Mouth Basin,offshore South China Sea[J].Marine and Petroleum Geology,2013,40:85-98.
参考文献 17
ZHAO F,WU S,SUN Q,et al.Submarine volcanic mounds in the Pearl River Mouth Basin,northern South China Sea[J].Marine Geology,2014,355:162-172.
参考文献 18
朱明,张向涛,黄玉平,等.珠江口盆地烃源岩特征及资源潜力[J].石油学报,2019,40(S1):53-68.ZHU Ming,ZHANG Xiangtao,HUANG Yuping,et al.Source rock characteristics and resource potential in Pearl River Mouth Basin[J].Acta Petrolei Sinica,2019,40(S1):53-68.
参考文献 19
刘浩冉,朱红涛,施和生,等.珠江口盆地惠州凹陷迁移型层序特征及其意义[J].地球科学,2015,40(5):840-850.LIU Haoran,ZHU Hongtao,SHI Hesheng,et al.Migrated sequence stratigraphic architecture and its geological significance in Huizhou depression,Pearl River mouth basin[J].Earth Science,2015,40(5):840-850.
参考文献 20
张彦振,覃军,蒋一鸣,等.珠江口盆地惠州北凹珠海组、珠江组储层发育特征及主控因素[J].海相油气地质,2024,29(2):179-187.ZHANG Yanzhen,QIN Jun,JIANG Yiming,et al.Characteristics and main controlling factors of the reservoirs of Zhuhai Formation and Zhujiang Formation in the northern Huizhou Sag,Pearl River Mouth Basin[J].Marine Origin Petroleum Geology,2024,29(2):179-187.
参考文献 21
戴建文,柴愈坤,王冠民,等.珠江口盆地恩平凹陷A油田新近系储层钙质砂岩夹层成因[J].海相油气地质,2023,28(4):391-400.DAI Jianwen,CHAI Yukun,WANG Guanmin,et al.Genesis of calcareous sandstone interlayer in Neogene reservoir of A Oilfield in Enping Sag,Pearl River Mouth Basin[J].Marine Origin Petroleum Geology,2023,28(4):391-400.
参考文献 22
张月霞,丁琳,周凤娟,等.珠江口盆地珠一坳陷古近系砂岩储层渗透率和埋深下限研究[J].海相油气地质,2023,28(3):311-322.ZHANG Yuexia,DING Lin,ZHOU Fengjuan,et al.Study on the lower limits of permeability and buried depth of Paleogene sandstone reservoirs in the Zhu Ⅰ Depression,Pearl River Mouth Basin[J].Marine Origin Petroleum Geology,2023,28(3):311-322.
参考文献 23
史玉玲,张向涛,龙祖烈,等.珠一拗陷惠州凹陷惠州26-6构造深层天然气成因及来源[J].成都理工大学学报(自然科学版),2022,49(4):432-441.SHI Yuling,ZHANG Xiangtao,LONG Zulie,et al.Genesis and source of deep natural gas in Huizhou 26-6 structure in Huizhou Sag,Zhu Ⅰ Depression,South China Sea[J].Journal of Chengdu University of Technology(Science & Technology Edition),2022,49(4):432-441.
参考文献 24
史玉玲,侯读杰,马宁.惠州凹陷生烃潜力及油源对比[J].石油天然气学报,2011,33(10):15-19,164.SHI Yuling,HOU Dujie,MA Ning.Hydrocarbon-generating potential and correlation of oil sources in Huizhou oil-enriched depression[J].Journal of Oil and Gas Technology,2011,33(10):15-19,164.
参考文献 25
乔荣臻,陈中红,李趁义,等.东营凹陷古近系沙河街组深层油气相态及成藏模式[J].地球科学与环境学报,2022,44(3):374-390.QIAO Rongzhen,CHEN Zhonghong,LI Chenyi,et al.Petroleum phase states and accumulation models of the deep Shahejie Formation of Paleogene in Dongying Depression,China[J].Journal of Earth Sciences and Environment,2022,44(3):374-390.
参考文献 26
赵星星,李斌,邬光辉,等.塔里木盆地塔中Ⅲ区奥陶系多相态油气藏成因及富集模式[J].天然气地球科学,2022,33(1):36-48.ZHAO Xingxing,LI Bin,WU Guanghui,et al.Genesis and enrichment model of Ordovician multi-phase oil and gas reservoirs in Tazhong Ⅲ block,Tarim Basin[J].Natural Gas Geoscience,2022,33(1):36-48.
参考文献 27
国家能源部.油气藏流体物性分析方法:SY/T 5542—2009[S].北京:石油工业出版社,2010:16-28.
参考文献 28
陈治军,文志刚,刘护创,等.二连盆地伊和乌苏凹陷烃源岩地球化学特征与生烃潜力[J].中国石油大学学报(自然科学版),2022,46(1):34-43.CHEN Zhijun,WEN Zhigang,LIU Huchuang,et al.Geochemical characteristics and hydrocarbon generation potential of source rocks in Yihewusu Sag,Erlian Basin[J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(1):34-43.
参考文献 29
施和生,高阳东,刘军,等.珠江口盆地惠州26洼“源-汇-聚”特征与惠州26-6大油气田发现启示[J].石油与天然气地质,2022,43(4):777-791.SHI Hesheng,GAO Yangdong,LIU Jun,et al.Characteristics of hydrocarbon source-migration-accumulation in Huizhou 26 Sag and implications of the major Huizhou 26-6 discovery in Pearl River Mouth Basin[J].Oil & Gas Geology,2022,43(4):777-791.
参考文献 30
王真真,胡林,王世朝,等.珠江口盆地珠三坳陷文昌9-7转换斜坡带构造特征与控藏机制[J].海相油气地质,2023,28(1):83-93.WANG Zhenzhen,HU Lin,WANG Shichao,et al.Structural characteristics and reservoir-control mechanism of Wenchang 9-7 transfer slope zone in Zhu Ⅲ Depression,Pearl River Mouth Basin[J].Marine Origin Petroleum Geology,2023,28(1):83-93.
参考文献 31
王清华.塔里木盆地富满油田凝析气藏成因[J].石油勘探与开发,2023,50(6):1128-1139.WANG Qinghua.Origin of gas condensate reservoir in Fuman Oilfield,Tarim Basin,NW China[J].Petroleum Exploration and Development,2023,50(6):1128-1139.
目录contents

    摘要

    惠州凹陷惠州26洼古近系油气资源丰富,相态复杂多变且成因不明。综合原油物性、井流物组分和有机地化等资料,采用经验统计法和PVT相图法对研究区油气相态类型进行判识,并分析空间分布差异及成因机制。基于研究区深层不同类型油气藏的成藏期次、成藏过程等综合分析,建立“一期油相充注”“两期油相叠加”和“早期油相-晚期气相”3种相态演化模式,以期为深层油气的高效勘探提供理论指导。结果表明:惠州26洼古近系原油表现为“低密度、低黏度、低含硫量、高蜡”的特征,存在黑油、挥发油和凝析气3种相态烃类。其中黑油分布最广泛,挥发油和凝析气仅分布于惠州26-6和21-8构造带;纵向上,恩平组相态类型以挥发油和凝析气为主,文昌组黑油、挥发油和凝析气共存,部分井位表现为“油气相间”的分布特征。油气相态的空间差异主要受控于烃源岩的热演化程度以及油气差异充注过程,其中主要充注期对应的油气成熟度以及晚期高熟油气混入比例是研究区不同油气藏相态差异的主要原因。

    Abstract

    The Huizhou 26 sub-sag is rich in oil and gas resources,but its fluid phases are complex and variable, with unknown origins. Based on crude oil properties, well fluid compositions, and organic geochemical data, this study applies empirical statistical methods and PVT phase diagrams to identify the hydrocarbon phase types in the area. The spatial distribution characteristics and genetic mechanisms of these phases are analyzed. Through a comprehensive examination of the formation stages and processes of different reservoir types , three phase evolution models are proposed: initial oil-phase filling, two-stage oil-phase superposition, and early oil-phase followed by late gas-phase charging. The results provide theoretical guidance for the efficient exploration of deep hydrocarbons. The crude oil from Huizhou 26 sub-sag is characterized by low density, low viscosity, low sulfur content, and high wax content. Three hydrocarbon phase types are identified: black oil, volatile oil, and condensate gas. Among these, black oil is the most widely distributed, while volatile oil and condensate gas occur mainly in the Huizhou 26-6 and 21-8 structural zones. Vertically, the Enping Formation is dominated by volatile oil and condensate gas, whereas black oil, volatile oil, and condensate gas coexist in the Wenchang Formation. Some wells display vertical alternation of oil and gas phases. The spatial variability of oil and gas phases is primarily controlled by the thermal maturity of source rocks and the hydrocarbon charging process. Specifically, the maturity level of hydrocarbons during the main filling stage and the extent of late mixing with high-maturity hydrocarbons are the key controlling factors.

  • 近年来油气勘探层系逐渐向深层拓展,复杂油气相态是深层油气勘探面临的一大难题,也是揭示油气成藏过程的一个重要抓手[1-4]。常用的油气相态判识方法有经验统计法和PVT相图法[5-6]。前人研究认为,烃类流体的相态主要受烃类的化学成分和温压系统的控制,烃源岩热演化、多期油气充注和成藏后的次生改造作用导致了油气相态的多祥性和成因的复杂性[7-14]。惠州凹陷是珠江口盆地典型的高油凹陷,随着惠州26洼向东部和南部的进一步勘探,油气相态类型以及空间分布的复杂性进一步呈现,“上气下油”“上油下气”“油气相间”的分布特征都有呈现,但成因机制尚不清楚,严重制约了该区深层油气成藏过程及富集机制的研究。笔者基于研究区实际资料,采用经验统计法和PVT相图法划分惠州26洼古近系油气相态类型,分析相态空间分布特征与成因机制,总结典型油气藏的相态演化模式,以期为研究区深层油气分布规律提供证据,从而指导深层油气的高效勘探。

  • 1 区域地质概况

  • 惠州凹陷位于珠江口盆地珠一坳陷中部,毗邻陆丰凹陷和西江凹陷,是一个呈NEE向展布的菱形凹陷,面积约10000 km2[15](图1(a))。惠州26洼位于惠州凹陷南部,临近惠州22洼、惠州21洼、西江24洼和西江30洼,包括惠州25-7、惠州26-6、惠州21-8和惠州27-5四个典型构造带(图1(b))。

  • 惠州26洼自晚白垩世以来主要经历了5次重要的构造运动,分别为神狐运动、珠琼运动一幕、珠琼运动二幕、南海运动和东沙运动,形成了现今“上断下坳”的构造特征,沉积环境经历了“先陆后海”的变迁[16-17]。惠州26洼发育的地层从老到新分别为前古近系基底、文昌组、恩平组、珠海组、珠江组、韩江组、粤海组、万山组和第四系[15]。烃源岩主要为文昌组和恩平组[18],主力储层为珠江组和韩江组的三角洲砂岩,主要区域盖层为韩江组下部发育的浅海陆棚相泥岩与珠江组上段海相泥岩[19-22]。惠州26洼油气资源丰富,集中分布于东南和西南边缘,惠州26-6构造带油气资源最丰富,油气主要来源于文昌组下段烃源岩[23-24]

  • 2 油气相态判识与分布

  • 2.1 油气性质

  • 整理实际勘探资料发现,惠州26洼原油密度主要介于0.74~0.86 g/cm3,50℃下的原油黏度介于0.95~11.49 mPa·s;统计质量分数数据发现,含硫量普遍小于0.12%,胶质+沥青质质量分数介于8.11%~50.6%,含蜡量主要分布于4%~20%。整体来看,惠州26洼原油表现为“低密度、低黏度、低含硫量、低胶质+沥青质含量、高蜡含量”的特征。原油密度、含硫量、沥青含量和胶质含量都表现为随深度的增加而降低,含蜡量表现为随深度的增加而逐渐增加(图2)。

  • 惠州26洼油气组分复杂多变,不同构造带油气成分的质量分数(w)存在较大差异(表1)。惠州25-7构造带油气组分中CO2含量偏低,C1含量较低,C5+含量偏高(大于40%),气油比较低(小于250 m3/m3),油质偏重;惠州26-6构造带油气组分中CO2含量低,C1含量高(多数大于50%),C5+含量偏低(多数小于30%),气油比较高(多数大于250 m3/m3),油质偏轻;惠州21-8构造带油气组分中CO2含量较低,C1含量高(大于50%),C5+含量低(小于10%),气油比很高(大于550 m3/m3),油质偏轻;惠州27-5构造带油气组分中CO2含量低,C1含量相对较高,C5+含量相对较高,气油比较低,油质相对偏重。

  • 2.2 油气相态判识方法与结果

  • 随着油气勘探进程的加快,惠州26洼发现了大量的油气藏,但是原油物性差异明显,相态类型复杂多变,因此综合采用多种方法进行相态类型判识,是明确其空间分布及成因的基础。

  • 图1 惠州26洼地理位置、构造格局、油气分布和地层柱状图 (地层柱状图据文献[15]

  • Fig.1 Geographical location, structural pattern, oil and gas distribution, and stratigraphic bar chart of Huizhou 26 sub-sag (stratigraphic bar chart according to reference [15])

  • 2.2.1 经验统计法

  • 经验统计法是根据油气藏的流体组分、平均相对分子质量、密度和气油比等物性数据,运用数理统计方法总结出来的相态类型判识方法[11]。储层流体三元组成三角图法、地下流体密度和平均分子量法以及气油比判别法是3种常用且准确度较高的方法[25-26]。本次研究通过单井地层流体报告整理所需参数,综合这3种经验统计法判识工区相态类型。

  • 储层流体三元组成三角图法以重质组分C7+的含量作为主要判别参数划分油气藏的相态类型[22]。整理资料发现,研究区油气样品C7+的含量跨度较大,主要介于6.90%~59.35%,适合用该方法判识相态类型。结果显示W27A井等5个样品点为黑油;W26E井等3个样品点为挥发油;W21B井等4个样品点为凝析气(图3(a))。

  • 根据地层条件下的流体密度和烃类流体的平均分子量这两个参数也可以判别油气藏的相态类型[5]。研究区地下流体密度介于0.31~0.82 g/cm3,通过计算发现平均相对分子质量介于31.38~167.19。该方法判识结果显示W25D井等5个样品点为黑油;W26E井等3个样品点为挥发油;W26A井等4个样品点为凝析气(图3(b))。

  • 图2 惠州凹陷惠州26洼原油物性与深度关系

  • Fig.2 Relationship between physical properties and depth of crude oil in Huizhou 26 sub-sag

  • 表1 惠州26洼典型构造带油气组分特征及物性参数

  • Table1 Characteristics and physical parameters of oil and gas components in typical structural zones of Huizhou 26 sub-sag

  • 气油比判别法是油田常用的判别方法,划分标准为当气油比小于250 m3/m3时,指示流体为黑油;当气油比为250~550 m3/m3时,指示流体为挥发油;当气油比为550~18000 m3/m3时,指示流体为凝析气[24]。研究区气油比资料丰富,数值分布范围广,最低为40.5 m3/m3,最高为1726.4 m3/m3。气油比判别法与前两种经验统计法判识研究区相态类型结果一致(图3(c))。

  • 综合3种经验统计法判识结果发现,惠州25-7构造带全部为黑油相态;惠州26-6构造带以挥发油和凝析气为主,分别占比53%和31%,还有少量的黑油相态,占比16%;惠州21-8构造带相态类型有黑油和凝析气,分别占比33%和67%;惠州27-5构造带相态类型有黑油和挥发油,分别占比75%和25%。

  • 2.2.2 PVT相图法

  • PVT相图法是根据各类油气藏的PVT相图特征和储层温度等温降压线的位置来判别相态类型[5]。整理研究区的PVT资料,利用烃类流体的组分含量数据(表1),借助PVTsim软件绘制了典型井的PVT相图。结果显示,W25B井3737.22 m样品点和W27A井3956.51 m样品点为黑油;W26A井3404.99 m样品点和W27A井3755.5 m样品点为挥发油;W26A井3483.19 m样品点和W21B井4634.81 m样品点为凝析气(图4)。PVT相图法与经验统计法判识结果一致。因此,惠州26洼的油气相态主要包括黑油、挥发油和凝析气。

  • 2.3 油气相态空间分布特征

  • 2.3.1 平面分布特征

  • 惠州26洼相态类型丰富,但空间分布存在差异,其中,黑油分布最广泛,主要分布在惠州25-7和惠州27-5构造带;挥发油集中分布于惠州26-6构造带;凝析气集中分布于惠州26-6和惠州21-8构造带(图5)。从惠州26-6构造带向西和向东北方向,都表现为气油比逐渐降低,油气相态由挥发油、凝析气向黑油逐渐过渡。

  • 图3 惠州26洼经验统计法判识相态结果

  • Fig.3 Results of Huizhou 26 sub-sag empirical statistics method for identifying phase states

  • 图4 惠州26洼典型井的PVT相图

  • Fig.4 PVT phase diagram of typical wells in Huizhou 26 sub-sag

  • 图5 惠州26洼油气相态平面分布

  • Fig.5 Distribution plan of oil and gas phase state in Huizhou 26 sub-sag

  • 2.3.2 纵向分布特征

  • 研究区的油气主要分布于埋深3000 m以下,油气相态分布与深度对应的关系并不明显(图6)。层系上,恩平组以挥发油和凝析气为主,文昌组烃类相态类型丰富,黑油、挥发油和凝析气共存。此外,研究区单井纵向上油气相态存在多种分布样式,多数表现为单一相态分布,部分表现出“上轻下重”(如W26E井)、“上气下油”(如W26B井)以及“油气相间”的特征(如W26A井)。

  • 图6 惠州26洼油气相态纵向分布

  • Fig.6 Vertical distribution of oil and gas phase state in Huizhou 26 sub-sag

  • 3 油气相态成因分析

  • 本次研究发现烃源岩热演化程度和油气差异充注是惠州26洼油气相态差异的主要原因,而通过分析实际资料及前人研究成果显示,研究区油气没有发生明显的次生改造作用[1]

  • 3.1 烃源岩热演化程度

  • 不同热演化阶段烃源岩生成的烃类组分不同,从而影响油气的充注相态[327-28]。前人研究表明,惠州26洼油气来源于文昌组下段烃源岩,惠州26-6、21-8、27-5构造带油气来源于惠州26洼,惠州25-7构造带油气来源于惠州26洼和西江30洼,表现为近源的特征[23-24]。文昌组下段烃源岩在距今20 Ma进入生烃门限,距今10 Ma进入生油高峰,现今已进入生气阶段[29-30](图7),高成熟的烃源岩为形成多相态类型油气藏奠定了物质基础。研究区4个构造带中,惠州25-7和惠州27-5两个构造带处于烃源岩镜质体反射率Ro<1%的范围,成熟度较低,决定了其生烃产物以液态烃为主,为形成黑油相态奠定了物质基础;而惠州26-6和惠州21-8构造带则处于烃源岩Ro>1.3 %的附近,处于高成熟阶段,决定了其生烃产物以凝析油气和气态烃为主(图7)。因此构造带间主体烃类相态的类型主要受控于临近的供烃源岩的热演化程度。

  • 图7 惠州凹陷文昌组下段烃源岩现今Ro等值线图

  • Fig.7 Current Ro contour map of source rocks in the lower section of Wenchang formation in Huizhou Depression

  • 3.2 油气差异充注

  • 当油气藏为多期充注时,不同时期充注的油气存在成熟度差异,多期烃类的叠加会使油气组分发生变化从而导致油气相态转变[1331],增加油气相态的复杂性。因此,油气藏形成时间及其对应不同时期充注的强度差异是影响油气相态复杂性的重要原因。综合储层流体包裹体观察和显微荧光分析,利用均一温度-埋藏史定年法确定油气成藏期次,发现研究区不同油气藏的充注期次及充注幅度存在较大差异(图8),主成藏期对应的油气成熟度以及晚期高熟油气混入强弱的差异是不同油气藏相态差异的主要原因。

  • 惠州25-7油藏储层样品检测到一期油包裹体,发黄色、黄绿色荧光,同期盐水包裹体均一温度为105~135℃(图9(a)、图10(a)和(b))。将均一温度范围投影到单井埋藏史图上,确定该油藏形成时间为14.8 Ma~现今(图9(e)),充注原油重质组分含量高,成熟度较低,现今油气相态呈现液态黑油相。

  • 惠州26-6油气藏储层样品检测到3期油包裹体:第一期具有黄绿色荧光特征,同期盐水包裹体均一温度为72~83℃;第二期呈现蓝绿色荧光特征,同期盐水包裹体均一温度为85~107℃;第三期呈现蓝色荧光特征,且检测到大量气包裹体,同期盐水包裹体均一温度为123~137℃(图9(b)、图10(c)和(d))。结合单井埋藏史-热史,确定该油藏为三期充注(图9(f)):第一期为19.1~13.8 Ma,低熟油充注(计算反射率Rc ≈ 0.50%~0.70%);第二期为13.8~10 Ma,成熟油充注(Rc ≈ 0.70%~0.87%);第三期为10 Ma~现今,高熟油气充注(Rc ≈ 1.10%~1.50%),3期叠加现今相态表现为以挥发油和凝析气为主。分析W26A井发现,早期低熟和成熟油近源充注,相态全部为黑油相;后期高熟油气充注,由于晚期成藏运移阻力较大,仅在相对优质的储层段成藏(如W26A井EP23层段、WC427层段),形成“油气相间”的分布特征。

  • 惠州21-8油气藏储层样品检测到两期油包裹体:第一期具有蓝绿色荧光特征,同期盐水包裹体均一温度为117~138℃;第二期呈现蓝色荧光特征,且检测到气包裹体,同期盐水包裹体均一温度为156~175℃(图9(c)、图10(e)和(f))。结合单井埋藏史-热史,确定该油藏为两期充注(图9(g)):第一期为15~9 Ma,成熟油充注,重质组分含量高;第二期为9 Ma~现今,高熟油气充注,两期叠加使现今相态以凝析气为主,还有少量的黑油相。

  • 图8 惠州26洼不同油气藏成藏期次、充注过程与相态匹配图

  • Fig.8 Diagram of reservoir formation stages, filling processes, and phase states for different oil and gas reservoirs in Huizhou 26 sub-sag

  • 惠州27-5油藏储层样品检测到两期油包裹体:第一期呈现黄绿色荧光特征,同期盐水包裹体均一温度为93~113℃;第二期呈现蓝绿色荧光特征,同期盐水包裹体均一温度为127~153℃(图9(d)、图10(g)、(h))。由单井埋藏史图确定该油藏为两期充注,成藏时间分别为12~5.2 Ma和5.2 Ma~现今(图9(h))。第一期为低熟油充注,第二期少量高熟油气充注,油气相态呈现黑油相和挥发油相。

  • 4 油气相态演化过程

  • 研究区油气藏相态复杂分布,受控于差异成藏的影响,表现出“一期油相充注”“两期油相叠加”和“早期油相-晚期气相”3种油气相态演化模式。

  • “一期油相充注”主要分布于惠州25-7构造带,油气来源表现为近源的特征,烃源岩处于Ro<1%的范围,成熟度较低,生烃产物以液态烃为主。由于只经历了一期液态烃的充注,后期未发生变化,主要呈现黑油相态(图11(a))。

  • “两期油相叠加”主要分布于惠州27-5构造带,油气来源表现为近源的特征,烃源岩处于Ro<1%的范围,成熟度较低,生烃产物以液态烃为主。经历了两期油气充注的叠加,第一期油包裹体发黄绿色荧光,为低熟油充注,气油比很低(小于50 m3/m3)且油质偏重,呈现黑油相态,第二期少量高熟油气充注,气油比升高(大于250 m3/m3)且原油密度降低,相态表现为黑油和挥发油相(图11(b))。

  • 图9 惠州26洼油气差异充注证据

  • Fig.9 Evidence of differential oil and gas filling in Huizhou 26 sub-sag

  • 图10 惠州26洼不同相态烃类包裹体镜下照片

  • Fig.10 Microscopic images of fluid inclusions of hydrocarbons with different phases in Huizhou 26 sub-sag

  • “早期油相-晚期气相”主要分布于惠州26-6构造带,油气来源表现为近源的特征,烃源岩处于Ro>1.3 %的范围,成熟度高,生烃产物以凝析油气为主。经历了3期油气充注的叠加,第一期油包裹体发黄绿色荧光,为低熟油充注,呈现黑油相态,第二期油包裹体发蓝绿色荧光,为成熟油充注,呈现挥发油相态,晚期高熟油气充注,相态表现为气相(图11(c))。

  • 图11 惠州26洼油气相态演化模式

  • Fig.11 Evolution model of oil and gas phase states in Huizhou 26 sub-sag

  • 5 结论

  • (1)惠州26洼存在黑油、挥发油和凝析气3种相态类型。其中,黑油分布最广泛,挥发油和凝析气仅分布于惠州26-6和21-8构造带;恩平组相态类型以挥发油和凝析气为主,文昌组黑油、挥发油和凝析气共存,表现为“上轻下重”“上气下油”以及“油气相间”的多种分布特征。

  • (2)研究区不同油气藏形成期次和时间存在差异:惠州25-7油藏为一期成藏,成藏时间为14.8 Ma~现今,低熟油充注;惠州26-6油气藏为3期成藏,分别为19.1~13.8 Ma,13.8~10 Ma和10 Ma~现今,晚期以高熟油气充注为主;惠州21-8油气藏为两期成藏,分别为15~9 Ma和9 Ma~现今,后期高熟油气充注强度大;惠州27-5油藏为两期成藏,分别为12~5.2 Ma和5.2 Ma~现今,以早期成熟油充注为主。

  • (3)烃源岩热演化程度和油气差异充注是惠州26洼油气相态差异的主要原因。不同热演化阶段烃源岩生成的烃类组分不同,为形成多相态类型烃奠定了物质基础;多期油气充注的叠加尤其是晚期高熟油气混入的比例引起了相态转变。在这些因素的控制下,研究区形成了“一期油相充注”“两期油相叠加”和“早期油相-晚期气相”3种相态演化模式。

  • 参考文献

    • [1] 李斌,姜潇俊,赵星星,等.塔里木盆地台盆过渡带多相态油气藏成因及差异富集模式:以玉科地区奥陶系为例[J].石油学报,2023,44(5):794-808.LI Bin,JIANG Xiaojun,ZHAO Xingxing,et al.Genesis and differential enrichment model of multiphase reservoirs in platform-basin transitional zone of Tarim Basin:a case study of the Ordovician in Yuke area[J].Acta Petrolei Sinica,2023,44(5):794-808.

    • [2] 贾承造.含油气盆地深层—超深层油气勘探开发的科学技术问题[J].中国石油大学学报(自然科学版),2023,47(5):1-12.JIA Chengzao.Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(5):1-12.

    • [3] 彭平安,贾承造.深层烃源演化与原生轻质油/凝析油气资源潜力[J].石油学报,2021,42(12):1543-1555.PENG Ping’an,JIA Chengzao.Evolution of deep source rock and resource potential of primary light oil and condensate[J].Acta Petrolei Sinica,2021,42(12):1543-1555.

    • [4] HOU M G,ZHA M,DING X J,et al.Source and accumulation process of Jurassic biodegraded oil in the Eastern Junggar Basin,NW China[J].Petroleum Science,2021,18(4):1033-1046.

    • [5] 孙志道.油气藏流体类型判别方法[J].石油勘探与开发,1996,23(1):69-75.SUN Zhidao.Identification method of fluid types in oil and gas reservoirs[J].Petroleum Exploration and Development,1996,23(1):69-75.

    • [6] 王金铎,曾治平,徐冰冰,等.准噶尔盆地沙湾凹陷二叠系上乌尔禾组流体相态及油气藏类型[J].岩性油气藏,2024,36(1):23-31.WANG Jinduo,ZENG Zhiping,XU Bingbing,et al.Fluid phase and hydrocarbon reservoir types of Permian Upper Urho Formation in Shawan Sag,Junggar Basin[J].Lithologic Reservoirs,2024,36(1):23-31.

    • [7] 薛永安.我国东部油型盆地深层油气藏中CO2气体对相态变化有什么样的控制作用?[J].地球科学,2022,47(10):3887-3888.XUE Yongan.What kind of control effect does CO2 gas have on phase change in deep reservoirs in oil-type basins in Eastern China?[J].Earth Science,2022,47(10):3887-3888.

    • [8] 黄越义,廖玉宏,陈承声,等.塔里木盆地顺南1井和顺南4井油气相态演化的数值模拟与预测[J].石油与天然气地质,2023,44(1):138-149.HUANG Yueyi,LIAO Yuhong,CHEN Chengsheng,et al.Numerical simulation and prediction of hydrocarbon phase evolution of wells Shunnan 1 and 4,Tarim Basin[J].Oil & Gas Geology,2023,44(1):138-149.

    • [9] 张水昌,朱光有,杨海军,等.塔里木盆地北部奥陶系油气相态及其成因分析[J].岩石学报,2011,27(8):2447-2460.ZHANG Shuichang,ZHU Guangyou,YANG Haijun,et al.The phases of Ordovician hydrocarbon and their origin in the Tabei uplift,Tarim Basin[J].Acta Petrologica Sinica,2011,27(8):2447-2460.

    • [10] DANESH A.PVT and phase behaviour of petroleum reservoir fluids[J].Developments in Petroleum Science,1998,11(1):1-3.

    • [11] 王飞龙,燕歌,陈容涛,等.渤中19-6地区深层油气赋存相态差异性及其成因机制[J].中国海上油气,2021,33(3):58-68.WANG Feilong,YAN Ge,CHEN Rongtao,et al.Difference and its genetic mechanism of deep hydrocarbon occurrence phases in BZ19-6 area[J].China Offshore Oil and Gas,2021,33(3):58-68.

    • [12] 任战利,崔军平,祁凯,等.深层、超深层温度及热演化历史对油气相态与生烃历史的控制作用[J].天然气工业,2020,40(2):22-30.REN Zhanli,CUI Junping,QI Kai,et al.Control effects of temperature and thermal evolution history of deep and ultra-deep layers on hydrocarbon phase state and hydrocarbon generation history[J].Natural Gas Industry,2020,40(2):22-30.

    • [13] CHEN C,WANG Y,BEAGLE J R,et al.Reconstruction of the evolution of deep fluids in light oil reservoirs in the Central Tarim Basin by using PVT simulation and basin modeling[J].Marine and Petroleum Geology,2019,107:116-126.

    • [14] WANG Y,ZHANG S,WANG F,et al.Thermal cracking history by laboratory kinetic simulation of Paleozoic oil in eastern Tarim Basin,NW China,implications for the occurrence of residual oil reservoirs[J].Organic Geochemistry,2006,37(12):1803-1815.

    • [15] 段威,田金强,李三忠,等.南海珠江口盆地惠州凹陷东南缘远源凸起带油气成因及来源[J].地学前缘,2022,29(5):176-187.DUAN Wei,TIAN Jinqiang,LI Sanzhong,et al.Crude oil in the uplifts of the Huizhou depression,Pearl River Mouth Basin,South China Sea:source and formation mechanisms[J].Earth Science Frontiers,2022,29(5):176-187.

    • [16] CHENG P,XIAO X M,TIAN H,et al.Source controls on geochemical characteristics of crude oils from the Qionghai Uplift in the western Pearl River Mouth Basin,offshore South China Sea[J].Marine and Petroleum Geology,2013,40:85-98.

    • [17] ZHAO F,WU S,SUN Q,et al.Submarine volcanic mounds in the Pearl River Mouth Basin,northern South China Sea[J].Marine Geology,2014,355:162-172.

    • [18] 朱明,张向涛,黄玉平,等.珠江口盆地烃源岩特征及资源潜力[J].石油学报,2019,40(S1):53-68.ZHU Ming,ZHANG Xiangtao,HUANG Yuping,et al.Source rock characteristics and resource potential in Pearl River Mouth Basin[J].Acta Petrolei Sinica,2019,40(S1):53-68.

    • [19] 刘浩冉,朱红涛,施和生,等.珠江口盆地惠州凹陷迁移型层序特征及其意义[J].地球科学,2015,40(5):840-850.LIU Haoran,ZHU Hongtao,SHI Hesheng,et al.Migrated sequence stratigraphic architecture and its geological significance in Huizhou depression,Pearl River mouth basin[J].Earth Science,2015,40(5):840-850.

    • [20] 张彦振,覃军,蒋一鸣,等.珠江口盆地惠州北凹珠海组、珠江组储层发育特征及主控因素[J].海相油气地质,2024,29(2):179-187.ZHANG Yanzhen,QIN Jun,JIANG Yiming,et al.Characteristics and main controlling factors of the reservoirs of Zhuhai Formation and Zhujiang Formation in the northern Huizhou Sag,Pearl River Mouth Basin[J].Marine Origin Petroleum Geology,2024,29(2):179-187.

    • [21] 戴建文,柴愈坤,王冠民,等.珠江口盆地恩平凹陷A油田新近系储层钙质砂岩夹层成因[J].海相油气地质,2023,28(4):391-400.DAI Jianwen,CHAI Yukun,WANG Guanmin,et al.Genesis of calcareous sandstone interlayer in Neogene reservoir of A Oilfield in Enping Sag,Pearl River Mouth Basin[J].Marine Origin Petroleum Geology,2023,28(4):391-400.

    • [22] 张月霞,丁琳,周凤娟,等.珠江口盆地珠一坳陷古近系砂岩储层渗透率和埋深下限研究[J].海相油气地质,2023,28(3):311-322.ZHANG Yuexia,DING Lin,ZHOU Fengjuan,et al.Study on the lower limits of permeability and buried depth of Paleogene sandstone reservoirs in the Zhu Ⅰ Depression,Pearl River Mouth Basin[J].Marine Origin Petroleum Geology,2023,28(3):311-322.

    • [23] 史玉玲,张向涛,龙祖烈,等.珠一拗陷惠州凹陷惠州26-6构造深层天然气成因及来源[J].成都理工大学学报(自然科学版),2022,49(4):432-441.SHI Yuling,ZHANG Xiangtao,LONG Zulie,et al.Genesis and source of deep natural gas in Huizhou 26-6 structure in Huizhou Sag,Zhu Ⅰ Depression,South China Sea[J].Journal of Chengdu University of Technology(Science & Technology Edition),2022,49(4):432-441.

    • [24] 史玉玲,侯读杰,马宁.惠州凹陷生烃潜力及油源对比[J].石油天然气学报,2011,33(10):15-19,164.SHI Yuling,HOU Dujie,MA Ning.Hydrocarbon-generating potential and correlation of oil sources in Huizhou oil-enriched depression[J].Journal of Oil and Gas Technology,2011,33(10):15-19,164.

    • [25] 乔荣臻,陈中红,李趁义,等.东营凹陷古近系沙河街组深层油气相态及成藏模式[J].地球科学与环境学报,2022,44(3):374-390.QIAO Rongzhen,CHEN Zhonghong,LI Chenyi,et al.Petroleum phase states and accumulation models of the deep Shahejie Formation of Paleogene in Dongying Depression,China[J].Journal of Earth Sciences and Environment,2022,44(3):374-390.

    • [26] 赵星星,李斌,邬光辉,等.塔里木盆地塔中Ⅲ区奥陶系多相态油气藏成因及富集模式[J].天然气地球科学,2022,33(1):36-48.ZHAO Xingxing,LI Bin,WU Guanghui,et al.Genesis and enrichment model of Ordovician multi-phase oil and gas reservoirs in Tazhong Ⅲ block,Tarim Basin[J].Natural Gas Geoscience,2022,33(1):36-48.

    • [27] 国家能源部.油气藏流体物性分析方法:SY/T 5542—2009[S].北京:石油工业出版社,2010:16-28.

    • [28] 陈治军,文志刚,刘护创,等.二连盆地伊和乌苏凹陷烃源岩地球化学特征与生烃潜力[J].中国石油大学学报(自然科学版),2022,46(1):34-43.CHEN Zhijun,WEN Zhigang,LIU Huchuang,et al.Geochemical characteristics and hydrocarbon generation potential of source rocks in Yihewusu Sag,Erlian Basin[J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(1):34-43.

    • [29] 施和生,高阳东,刘军,等.珠江口盆地惠州26洼“源-汇-聚”特征与惠州26-6大油气田发现启示[J].石油与天然气地质,2022,43(4):777-791.SHI Hesheng,GAO Yangdong,LIU Jun,et al.Characteristics of hydrocarbon source-migration-accumulation in Huizhou 26 Sag and implications of the major Huizhou 26-6 discovery in Pearl River Mouth Basin[J].Oil & Gas Geology,2022,43(4):777-791.

    • [30] 王真真,胡林,王世朝,等.珠江口盆地珠三坳陷文昌9-7转换斜坡带构造特征与控藏机制[J].海相油气地质,2023,28(1):83-93.WANG Zhenzhen,HU Lin,WANG Shichao,et al.Structural characteristics and reservoir-control mechanism of Wenchang 9-7 transfer slope zone in Zhu Ⅲ Depression,Pearl River Mouth Basin[J].Marine Origin Petroleum Geology,2023,28(1):83-93.

    • [31] 王清华.塔里木盆地富满油田凝析气藏成因[J].石油勘探与开发,2023,50(6):1128-1139.WANG Qinghua.Origin of gas condensate reservoir in Fuman Oilfield,Tarim Basin,NW China[J].Petroleum Exploration and Development,2023,50(6):1128-1139.

  • 参考文献

    • [1] 李斌,姜潇俊,赵星星,等.塔里木盆地台盆过渡带多相态油气藏成因及差异富集模式:以玉科地区奥陶系为例[J].石油学报,2023,44(5):794-808.LI Bin,JIANG Xiaojun,ZHAO Xingxing,et al.Genesis and differential enrichment model of multiphase reservoirs in platform-basin transitional zone of Tarim Basin:a case study of the Ordovician in Yuke area[J].Acta Petrolei Sinica,2023,44(5):794-808.

    • [2] 贾承造.含油气盆地深层—超深层油气勘探开发的科学技术问题[J].中国石油大学学报(自然科学版),2023,47(5):1-12.JIA Chengzao.Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(5):1-12.

    • [3] 彭平安,贾承造.深层烃源演化与原生轻质油/凝析油气资源潜力[J].石油学报,2021,42(12):1543-1555.PENG Ping’an,JIA Chengzao.Evolution of deep source rock and resource potential of primary light oil and condensate[J].Acta Petrolei Sinica,2021,42(12):1543-1555.

    • [4] HOU M G,ZHA M,DING X J,et al.Source and accumulation process of Jurassic biodegraded oil in the Eastern Junggar Basin,NW China[J].Petroleum Science,2021,18(4):1033-1046.

    • [5] 孙志道.油气藏流体类型判别方法[J].石油勘探与开发,1996,23(1):69-75.SUN Zhidao.Identification method of fluid types in oil and gas reservoirs[J].Petroleum Exploration and Development,1996,23(1):69-75.

    • [6] 王金铎,曾治平,徐冰冰,等.准噶尔盆地沙湾凹陷二叠系上乌尔禾组流体相态及油气藏类型[J].岩性油气藏,2024,36(1):23-31.WANG Jinduo,ZENG Zhiping,XU Bingbing,et al.Fluid phase and hydrocarbon reservoir types of Permian Upper Urho Formation in Shawan Sag,Junggar Basin[J].Lithologic Reservoirs,2024,36(1):23-31.

    • [7] 薛永安.我国东部油型盆地深层油气藏中CO2气体对相态变化有什么样的控制作用?[J].地球科学,2022,47(10):3887-3888.XUE Yongan.What kind of control effect does CO2 gas have on phase change in deep reservoirs in oil-type basins in Eastern China?[J].Earth Science,2022,47(10):3887-3888.

    • [8] 黄越义,廖玉宏,陈承声,等.塔里木盆地顺南1井和顺南4井油气相态演化的数值模拟与预测[J].石油与天然气地质,2023,44(1):138-149.HUANG Yueyi,LIAO Yuhong,CHEN Chengsheng,et al.Numerical simulation and prediction of hydrocarbon phase evolution of wells Shunnan 1 and 4,Tarim Basin[J].Oil & Gas Geology,2023,44(1):138-149.

    • [9] 张水昌,朱光有,杨海军,等.塔里木盆地北部奥陶系油气相态及其成因分析[J].岩石学报,2011,27(8):2447-2460.ZHANG Shuichang,ZHU Guangyou,YANG Haijun,et al.The phases of Ordovician hydrocarbon and their origin in the Tabei uplift,Tarim Basin[J].Acta Petrologica Sinica,2011,27(8):2447-2460.

    • [10] DANESH A.PVT and phase behaviour of petroleum reservoir fluids[J].Developments in Petroleum Science,1998,11(1):1-3.

    • [11] 王飞龙,燕歌,陈容涛,等.渤中19-6地区深层油气赋存相态差异性及其成因机制[J].中国海上油气,2021,33(3):58-68.WANG Feilong,YAN Ge,CHEN Rongtao,et al.Difference and its genetic mechanism of deep hydrocarbon occurrence phases in BZ19-6 area[J].China Offshore Oil and Gas,2021,33(3):58-68.

    • [12] 任战利,崔军平,祁凯,等.深层、超深层温度及热演化历史对油气相态与生烃历史的控制作用[J].天然气工业,2020,40(2):22-30.REN Zhanli,CUI Junping,QI Kai,et al.Control effects of temperature and thermal evolution history of deep and ultra-deep layers on hydrocarbon phase state and hydrocarbon generation history[J].Natural Gas Industry,2020,40(2):22-30.

    • [13] CHEN C,WANG Y,BEAGLE J R,et al.Reconstruction of the evolution of deep fluids in light oil reservoirs in the Central Tarim Basin by using PVT simulation and basin modeling[J].Marine and Petroleum Geology,2019,107:116-126.

    • [14] WANG Y,ZHANG S,WANG F,et al.Thermal cracking history by laboratory kinetic simulation of Paleozoic oil in eastern Tarim Basin,NW China,implications for the occurrence of residual oil reservoirs[J].Organic Geochemistry,2006,37(12):1803-1815.

    • [15] 段威,田金强,李三忠,等.南海珠江口盆地惠州凹陷东南缘远源凸起带油气成因及来源[J].地学前缘,2022,29(5):176-187.DUAN Wei,TIAN Jinqiang,LI Sanzhong,et al.Crude oil in the uplifts of the Huizhou depression,Pearl River Mouth Basin,South China Sea:source and formation mechanisms[J].Earth Science Frontiers,2022,29(5):176-187.

    • [16] CHENG P,XIAO X M,TIAN H,et al.Source controls on geochemical characteristics of crude oils from the Qionghai Uplift in the western Pearl River Mouth Basin,offshore South China Sea[J].Marine and Petroleum Geology,2013,40:85-98.

    • [17] ZHAO F,WU S,SUN Q,et al.Submarine volcanic mounds in the Pearl River Mouth Basin,northern South China Sea[J].Marine Geology,2014,355:162-172.

    • [18] 朱明,张向涛,黄玉平,等.珠江口盆地烃源岩特征及资源潜力[J].石油学报,2019,40(S1):53-68.ZHU Ming,ZHANG Xiangtao,HUANG Yuping,et al.Source rock characteristics and resource potential in Pearl River Mouth Basin[J].Acta Petrolei Sinica,2019,40(S1):53-68.

    • [19] 刘浩冉,朱红涛,施和生,等.珠江口盆地惠州凹陷迁移型层序特征及其意义[J].地球科学,2015,40(5):840-850.LIU Haoran,ZHU Hongtao,SHI Hesheng,et al.Migrated sequence stratigraphic architecture and its geological significance in Huizhou depression,Pearl River mouth basin[J].Earth Science,2015,40(5):840-850.

    • [20] 张彦振,覃军,蒋一鸣,等.珠江口盆地惠州北凹珠海组、珠江组储层发育特征及主控因素[J].海相油气地质,2024,29(2):179-187.ZHANG Yanzhen,QIN Jun,JIANG Yiming,et al.Characteristics and main controlling factors of the reservoirs of Zhuhai Formation and Zhujiang Formation in the northern Huizhou Sag,Pearl River Mouth Basin[J].Marine Origin Petroleum Geology,2024,29(2):179-187.

    • [21] 戴建文,柴愈坤,王冠民,等.珠江口盆地恩平凹陷A油田新近系储层钙质砂岩夹层成因[J].海相油气地质,2023,28(4):391-400.DAI Jianwen,CHAI Yukun,WANG Guanmin,et al.Genesis of calcareous sandstone interlayer in Neogene reservoir of A Oilfield in Enping Sag,Pearl River Mouth Basin[J].Marine Origin Petroleum Geology,2023,28(4):391-400.

    • [22] 张月霞,丁琳,周凤娟,等.珠江口盆地珠一坳陷古近系砂岩储层渗透率和埋深下限研究[J].海相油气地质,2023,28(3):311-322.ZHANG Yuexia,DING Lin,ZHOU Fengjuan,et al.Study on the lower limits of permeability and buried depth of Paleogene sandstone reservoirs in the Zhu Ⅰ Depression,Pearl River Mouth Basin[J].Marine Origin Petroleum Geology,2023,28(3):311-322.

    • [23] 史玉玲,张向涛,龙祖烈,等.珠一拗陷惠州凹陷惠州26-6构造深层天然气成因及来源[J].成都理工大学学报(自然科学版),2022,49(4):432-441.SHI Yuling,ZHANG Xiangtao,LONG Zulie,et al.Genesis and source of deep natural gas in Huizhou 26-6 structure in Huizhou Sag,Zhu Ⅰ Depression,South China Sea[J].Journal of Chengdu University of Technology(Science & Technology Edition),2022,49(4):432-441.

    • [24] 史玉玲,侯读杰,马宁.惠州凹陷生烃潜力及油源对比[J].石油天然气学报,2011,33(10):15-19,164.SHI Yuling,HOU Dujie,MA Ning.Hydrocarbon-generating potential and correlation of oil sources in Huizhou oil-enriched depression[J].Journal of Oil and Gas Technology,2011,33(10):15-19,164.

    • [25] 乔荣臻,陈中红,李趁义,等.东营凹陷古近系沙河街组深层油气相态及成藏模式[J].地球科学与环境学报,2022,44(3):374-390.QIAO Rongzhen,CHEN Zhonghong,LI Chenyi,et al.Petroleum phase states and accumulation models of the deep Shahejie Formation of Paleogene in Dongying Depression,China[J].Journal of Earth Sciences and Environment,2022,44(3):374-390.

    • [26] 赵星星,李斌,邬光辉,等.塔里木盆地塔中Ⅲ区奥陶系多相态油气藏成因及富集模式[J].天然气地球科学,2022,33(1):36-48.ZHAO Xingxing,LI Bin,WU Guanghui,et al.Genesis and enrichment model of Ordovician multi-phase oil and gas reservoirs in Tazhong Ⅲ block,Tarim Basin[J].Natural Gas Geoscience,2022,33(1):36-48.

    • [27] 国家能源部.油气藏流体物性分析方法:SY/T 5542—2009[S].北京:石油工业出版社,2010:16-28.

    • [28] 陈治军,文志刚,刘护创,等.二连盆地伊和乌苏凹陷烃源岩地球化学特征与生烃潜力[J].中国石油大学学报(自然科学版),2022,46(1):34-43.CHEN Zhijun,WEN Zhigang,LIU Huchuang,et al.Geochemical characteristics and hydrocarbon generation potential of source rocks in Yihewusu Sag,Erlian Basin[J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(1):34-43.

    • [29] 施和生,高阳东,刘军,等.珠江口盆地惠州26洼“源-汇-聚”特征与惠州26-6大油气田发现启示[J].石油与天然气地质,2022,43(4):777-791.SHI Hesheng,GAO Yangdong,LIU Jun,et al.Characteristics of hydrocarbon source-migration-accumulation in Huizhou 26 Sag and implications of the major Huizhou 26-6 discovery in Pearl River Mouth Basin[J].Oil & Gas Geology,2022,43(4):777-791.

    • [30] 王真真,胡林,王世朝,等.珠江口盆地珠三坳陷文昌9-7转换斜坡带构造特征与控藏机制[J].海相油气地质,2023,28(1):83-93.WANG Zhenzhen,HU Lin,WANG Shichao,et al.Structural characteristics and reservoir-control mechanism of Wenchang 9-7 transfer slope zone in Zhu Ⅲ Depression,Pearl River Mouth Basin[J].Marine Origin Petroleum Geology,2023,28(1):83-93.

    • [31] 王清华.塔里木盆地富满油田凝析气藏成因[J].石油勘探与开发,2023,50(6):1128-1139.WANG Qinghua.Origin of gas condensate reservoir in Fuman Oilfield,Tarim Basin,NW China[J].Petroleum Exploration and Development,2023,50(6):1128-1139.