en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王珂(1987-),男,高级工程师,博士,研究方向为构造地质学与储层地质学。E-mail: wangk_hz@petrochina.com.cn。

通信作者:

王珂(1987-),男,高级工程师,博士,研究方向为构造地质学与储层地质学。E-mail: wangk_hz@petrochina.com.cn。

中图分类号:TE 122.2

文献标识码:A

文章编号:1673-5005(2025)05-0016-15

DOI:10.3969/j.issn.1673-5005.2025.05.002

参考文献 1
丁文龙,王兴华,胡秋嘉,等.致密砂岩储层裂缝研究进展[J].地球科学进展,2015,30(7):737-750.DING Wenlong,WANG Xinghua,HU Qiujia,et al.Progress in tight sandstone reservoir fractures research[J].Advances in Earth Science,2015,30(7):737-750.
参考文献 2
汪如军,赵力彬,张永灵.基于最小耗能原理的库车坳陷超深致密砂岩裂缝定量预测[J].中国石油大学学报(自然科学版),2022,46(5):23-35.WANG Rujun,ZHAO Libin,ZHANG Yongling.Quantitative fracture prediction of ultra-deep tight sandstone in Kuqa Depression based on principle of minimum energy consumption[J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(5):23-35.
参考文献 3
司学强,彭博,庞志超,等.储集层多尺度裂缝特征及控制因素:以准噶尔盆地南缘侏罗系—白垩系为例[J].中国矿业大学学报,2022,51(4):731-741.SI Xueqiang,PENG Bo,PANG Zhichao,et al.Characteristics and controlling factors of multi-scale fractures in reservoir:a Jurassic-Cretaceous case from the southern margin of Junggar Basin[J].Journal of China University of Mining & Technology,2022,51(4):731-741.
参考文献 4
杨连刚,熊冉,康婷婷,等.塔里木盆地沙井子断裂带油气地质条件及勘探潜力[J].海相油气地质,2023,28(3):280-290.YANG Liangang,XIONG Ran,KANG Tingting,et al.Oil and gas geological conditions and exploration potential of Shajingzi fault belt in Tarim Basin[J].Marine Origin Petroleum Geology,2023,28(3):280-290.
参考文献 5
王大鹏,孔祥宇,田琨,等.2023全球重大油气发现及2024勘探展望[J].世界石油工业,2024,31(4):48-57.WANG Dapeng,KONG Xiangyu,TIAN Kun,et al.Global major oil and gas discoveries in 2023 and exploration outlook in 2024[J].World Petroleum Industry,2024,31(4):48-57.
参考文献 6
贾承造.含油气盆地深层—超深层油气勘探开发的科学技术问题[J].中国石油大学学报(自然科学版),2023,47(5):1-12.JIA Chengzao.Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(5):1-12.
参考文献 7
顾凯凯.致密砂岩储层多期裂缝定量预测研究:以库车坳陷克深2气田为例[D].青岛:中国石油大学(华东),2018:1-66.GU Kaikai.Quantitative prediction of multi-phase fractures in tight sandstone reservoirs:example of Keshen 2 gas field in Kuqa depression [D].Qingdao:China University of Petroleum(Huadong),2018:1-66.
参考文献 8
何巧林,王珂,胡春雷,等.深层致密砂砾岩储层构造裂缝分布规律与有效性评价:以库车坳陷KT1气藏亚格列木组为例[J].海相油气地质,2024,29(4):437-447.HE Qiaolin,WANG Ke,HU Chunlei,et al.Distribution regularity and effectiveness evaluation of structural fractures in deep tight glutenite reservoir:a case study of KT-1 gas reservoir in Kuqa Depression,Tarim Basin[J].Marine Origin Petroleum Geology,2024,29(4):437-447.
参考文献 9
刘春,张荣虎,张惠良,等.塔里木盆地库车前陆冲断带不同构造样式裂缝发育规律:证据来自野外构造裂缝露头观测[J].天然气地球科学,2017,28(1):52-61.LIU Chun,ZHANG Ronghu,ZHANG Huiliang,et al.Fracture development of different structural styles in Kuqa foreland thrust belt:from outcrop observation of structural fracture[J].Natural Gas Geoscience,2017,28(1):52-61.
参考文献 10
马存飞,孙文静,曾令鹏,等.沧东凹陷孔二段页岩中基于岩心裂缝观测的构造裂缝规模解析[J].中国石油大学学报(自然科学版),2023,47(4):1-11.MA Cunfei,SUN Wenjing,ZENG Lingpeng,et al.Mathematical analysis of structural fracture scale in shale based on core fracture observation of the second member of Kongdian Formation in Cangdong Sag[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(4):1-11.
参考文献 11
WILSON C E,AYDIN A,KARIMI-FARD M,et al.From outcrop to flow simulation:constructing discrete fracture models from a LIDAR survey[J].AAPG Bulletin,2011,95(11):1883-1905.
参考文献 12
HODGETTS D.Laser scanning and digital outcrop geology in the petroleum industry:a review[J].Marine and Petroleum Geology,2013,46:335-354.
参考文献 13
CASINI G,HUNT D W,MONSEN E,et al.Fracture characterization and modeling from virtual outcrops[J].AAPG Bulletin,2016,100(1):41-61.
参考文献 14
曾庆鲁,张荣虎,卢文忠,等.基于三维激光扫描技术的裂缝发育规律和控制因素研究:以塔里木盆地库车前陆区索罕村露头剖面为例[J].天然气地球科学,2017,28(3):397-409.ZENG Qinglu,ZHANG Ronghu,LU Wenzhong,et al.Fracture development characteristics and controlling factors based on 3D laser scanning technology:an outcrop case study of Suohan village,Kuqa foreland area,Tarim Basin[J].Natural Gas Geoscience,2017,28(3):397-409.
参考文献 15
唐永,肖安成,唐文军,等.基于三维激光扫描技术的裂缝随机模拟:以库车坳陷库车河剖面为例[J].地球科学,2023,48(2):640-656.TANG Yong,XIAO Ancheng,TANG Wenjun,et al.Stochastic fracture simulation based on three-dimensional laser scan technology:a case study of Kuqa River outcrop in Kuqa Depression[J].Earth Science,2023,48(2):640-656.
参考文献 16
曹婷.库车坳陷东部碎屑岩层新生代断层传播褶皱过程中的裂缝发育模式[D].杭州:浙江大学,2018.CAO Ting.Fracture patterns during the Cenozoic fault-propagation folding process:insights from the clastic rock of eastern Kuqa depression[D].Hangzhou:Zhejiang University,2018.
参考文献 17
王珂,张荣虎,曾庆鲁,等.塔里木盆地库车坳陷秋里塔格构造带箱形褶皱形成机制及油气勘探意义[J].天然气地球科学,2022,33(9):1384-1396.WANG Ke,ZHANG Ronghu,ZENG Qinglu,et al.Formation mechanism of the box fold and its significance in the Qiulitage structural belt of Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2022,33(9):1384-1396.
参考文献 18
吴高奎,林畅松,刘永福,等.库车-塔北地区中生代关键变革期主要不整合及古隆起地貌特征[J].石油与天然气地质,2019,40(4):763-777.WU Gaokui,LIN Changsong,LIU Yongfu,et al.Characteristics of major unconformities and paleo-geomorphology during the Mesozoic key transformation stages in Kuqa-Tabei area[J].Oil & Gas Geology,2019,40(4):763-777.
参考文献 19
杨学文,王清华,李勇,等.库车前陆冲断带博孜—大北万亿方大气区的形成机制[J].地学前缘,2022,29(6):175-187.YANG Xuewen,WANG Qinghua,LI Yong,et al.Formation mechanism of the Bozi-Dabei trillion cubic natural gas field,Kuqa foreland thrust belt[J].Earth Science Frontiers,2022,29(6):175-187.
参考文献 20
魏国齐,张荣虎,智凤琴,等.库车坳陷东部中生界构造-岩性地层油气藏形成条件与勘探方向[J].石油学报,2021,42(9):1113-1125.WEI Guoqi,ZHANG Ronghu,ZHI Fengqin,et al.Formation conditions and exploration directions of Mesozoic structural-lithologic stratigraphic reservoirs in the eastern Kuqa Depression[J].Acta Petrolei Sinica,2021,42(9):1113-1125.
参考文献 21
智凤琴,张荣虎,余朝丰.库车坳陷东部阳霞凹陷侏罗系石油地质条件与勘探方向[J].海相油气地质,2023,28(2):186-195.ZHI Fengqin,ZHANG Ronghu,YU Chaofeng.Jurassic petroleum geological conditions and exploration direction in Yangxia Sag,eastern Kuqa Depression[J].Marine Origin Petroleum Geology,2023,28(2):186-195.
参考文献 22
朱光有,杨海军,张斌,等.塔里木盆地迪那2大型凝析气田的地质特征及其成藏机制[J].岩石学报,2012,28(8):2479-2492.ZHU Guangyou,YANG Haijun,ZHANG Bin,et al.The geological feature and origin of Dina 2 large gas field in Kuqa Depression,Tarim Basin[J].Acta Petrologica Sinica,2012,28(8):2479-2492.
参考文献 23
杨海军,李勇,唐雁刚,等.塔里木盆地克深气田成藏条件及勘探开发关键技术[J].石油学报,2021,42(3):399-414.YANG Haijun,LI Yong,TANG Yangang,et al.Accumulation conditions,key exploration and development technologies for Keshen gas field in Tarim Basin[J].Acta Petrolei Sinica,2021,42(3):399-414.
参考文献 24
巩磊,高铭泽,曾联波,等.影响致密砂岩储层裂缝分布的主控因素分析:以库车前陆盆地侏罗系—新近系为例[J].天然气地球科学,2017,28(2):199-208.GONG Lei,GAO Mingze,ZENG Lianbo,et al.Controlling factors on fracture development in the tight sandstone reservoirs:a case study of Jurassic-Neogene in the Kuqa foreland basin[J].Natural Gas Geoscience,2017,28(2):199-208.
参考文献 25
王珂,张荣虎,李宝刚,等.致密砂岩储层构造裂缝特征及地质建模:以塔里木盆地库车坳陷大北12气藏为例[J].海相油气地质,2023,28(1):72-82.WANG Ke,ZHANG Ronghu,LI Baogang,et al.Characteristics and geological modeling of structural fractures in tight sandstone reservoir:taking Dabei-12 gas reservoir in Kuqa Depression,Tarim Basin as an example[J].Marine Origin Petroleum Geology,2023,28(1):72-82.
参考文献 26
王珂,杨海军,张惠良,等.超深层致密砂岩储层构造裂缝特征与有效性:以塔里木盆地库车坳陷克深8气藏为例[J].石油与天然气地质,2018,39(4):719-729.WANG Ke,YANG Haijun,ZHANG Huiliang,et al.Characteristics and effectiveness of structural fractures in ultra-deep tight sandstone reservoir:a case study of Keshen-8 gas pool in Kuqa Depression,Tarim Basin[J].Oil & Gas Geology,2018,39(4):719-729.
参考文献 27
袁静,曹宇,李际,等.库车坳陷迪那气田古近系裂缝发育的多样性与差异性[J].石油与天然气地质,2017,38(5):840-850.YUAN Jing,CAO Yu,LI Ji,et al.Diversities and disparities of fracture systems in the Paleogene in DN gas field,Kuqa Depression,Tarim Basin[J].Oil & Gas Geology,2017,38(5):840-850.
参考文献 28
郭超,张志勇,吴林,等.中新生代天山剥蚀与塔里木盆地北缘沉积耦合过程:新疆库车河剖面的低温热年代学证据[J].地球科学,2022,47(9):3417-3430.GUO Chao,ZHANG Zhiyong,WU Lin,et al.Mesozoic-Cenozoic coupling process of Tianshan denudation and sedimentation in the northern margin of the Tarim Basin:evidence from low-temperature thermochronology(Kuqa river section,Xinjiang)[J].Earth Science,2022,47(9):3417-3430.
参考文献 29
何登发,袁航,李涤,等.吐格尔明背斜核部花岗岩的年代学、地球化学与构造环境及其对塔里木地块北缘古生代伸展聚敛旋回的揭示[J].岩石学报,2011,27(1):133-146.HE Dengfa,YUAN Hang,LI Di,et al.Chronology,geochemistry and tectonic setting of granites at the core of Tugerming anticline,Tarim Basin:indications of Paleozoic extensional and compressional cycle at the northern margin of Tarim continental block[J].Acta Petrologica Sinica,2011,27(1):133-146.
参考文献 30
史文中,田岩,黄应,等.基于张量投票的激光扫描数据修复方法[J].系统工程与电子技术,2009,31(11):2723-2727.SHI Wenzhong,TIAN Yan,HUANG Ying,et al.Laser scanning data inpainting method based on tensor voting technique[J].Systems Engineering and Electronics,2009,31(11):2723-2727.
参考文献 31
刘春,张荣虎,张惠良,等.库车前陆冲断带多尺度裂缝成因及其储集意义[J].石油勘探与开发,2017,44(3):463-472.LIU Chun,ZHANG Ronghu,ZHANG Huiliang,et al.Genesis and reservoir significance of multi-scale natural fractures in Kuqa foreland thrust belt,Tarim Basin,NW China[J].Petroleum Exploration and Development,2017,44(3):463-472.
参考文献 32
张惠良,张荣虎,杨海军,等.超深层裂缝-孔隙型致密砂岩储集层表征与评价:以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J].石油勘探与开发,2014,41(2):158-167.ZHANG Huiliang,ZHANG Ronghu,YANG Haijun,et al.Characterization and evaluation of ultra-deep fracture-pore tight sandstone reservoirs:a case study of Cretaceous Bashijiqike Formation in Kelasu tectonic zone in Kuqa foreland basin,Tarim,NW China[J].Petroleum Exploration and Development,2014,41(2):158-167.
参考文献 33
王振宇,刘超,张云峰,等.库车坳陷K区块冲断带深层白垩系致密砂岩裂缝发育规律、控制因素与属性建模研究[J].岩石学报,2016,32(3):865-876.WANG Zhenyu,LIU Chao,ZHANG Yunfeng,et al.A study of fracture development,controlling factor and property modeling of deep-lying tight sandstone in Cretaceous thrust belt K region of Kuqa Depression[J].Acta Petrologica Sinica,2016,32(3):865-876.
参考文献 34
张荣虎,王珂,王俊鹏,等.塔里木盆地库车坳陷克深构造带克深8区块裂缝性低孔砂岩储层地质模型[J].天然气地球科学,2018,29(9):1264-1273.ZHANG Ronghu,WANG Ke,WANG Junpeng,et al.Reservoir geological model of fracture low porosity sandstone of Keshen 8 wellblock in Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2018,29(9):1264-1273.
参考文献 35
FENG Jianwei,REN Qiqiang,XU Ke.Using geomechanical method to predict tectonic fractures in low-permeability sandstone reservoirs [J].Advances in Earth Science,2016,31(9):946-967.
参考文献 36
杨海军,张荣虎,杨宪彰,等.超深层致密砂岩构造裂缝特征及其对储层的改造作用:以塔里木盆地库车坳陷克深气田白垩系为例[J].天然气地球科学,2018,29(7):942-950.YANG Haijun,ZHANG Ronghu,YANG Xianzhang,et al.Characteristics and reservoir improvement effect of structural fracture in ultra-deep tight sandstone reservoir:a case study of Keshen Gasfield,Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2018,29(7):942-950.
参考文献 37
王珂,张荣虎,方晓刚,等.超深层裂缝—孔隙型致密砂岩储层特征与属性建模:以库车坳陷克深8气藏为例[J].中国石油勘探,2018,23(6):87-96.WANG Ke,ZHANG Ronghu,FANG Xiaogang,et al.Characteristics and property modeling of ultra-deep fractured-porous tight sandstone reservoir:a case study on the Keshen 8 gas reservoir in Kuqa Depression[J].China Petroleum Exploration,2018,23(6):87-96.
参考文献 38
史超群,王佐涛,朱文慧,等.塔里木盆地库车坳陷克拉苏构造带大北地区超深储层裂缝特征及其对储层控制作用[J].天然气地球科学,2020,31(12):1687-1699.SHI Chaoqun,WANG Zuotao,ZHU Wenhui,et al.Fracture characteristic and its impact on reservoir quality of ultra-deep reservoir in Dabei region,Kelasu tectonic belt,Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2020,31(12):1687-1699.
目录contents

    摘要

    天然裂缝是改善低孔致密储层物性、提高油气产能的重要因素,相似露头天然裂缝的发育模式建立是指导井下裂缝分布预测的有效方法。以库车前陆盆地为例,采用三维激光扫描技术对露头天然裂缝进行识别,并结合人工辅助测量及典型油气藏的实际地质资料,建立背斜型构造的天然裂缝发育模式,并分析天然裂缝的演化过程。结果表明:库车前陆盆地背斜型构造的天然裂缝以高角度缝为主,发育前褶皱期和同褶皱期2期、5类天然裂缝,其中前褶皱期天然裂缝数量少,且多数为无效裂缝,对库车地区油气成藏贡献较低,而同褶皱期天然裂缝数量较多、有效性好,可作为油气高效渗流通道,是库车地区形成裂缝性油气藏的重要地质条件;库车前陆盆地背斜型构造的核部天然裂缝密度比两翼要低,但开度、渗透率和油气产能高于两翼,与典型背斜型油气藏的勘探实践一致;针对三维激光扫描技术天然裂缝识别率有待提高、裂缝开度和充填系数等参数识别困难的问题,还需要寻找可行的方法对该技术进行优化完善。

    Abstract

    Natural fractures are key factors in improving the quality of low-porosity reservoirs and enhancing petroleum productivity. Establishing natural fracture development models in analogous outcrops is an effective method to guide the prediction of subface fracture distribution.Using the Kuqa foreland basin as an example, a natural fracture development model of anticlinal structures was established by applying 3D laser scanning technology to identify natural fractures, supplemented by manual measurements and geological data from typical petroleum reservoirs. The evolution process of natural fractures was also analyzed. The results show that natural fractures in anticlinal structures of the Kuqa foreland basin are mainly high-angle, and can be classified into two stages (pre-fold and syn-fold) and five types. Pre-fold fractures are few in number and mostly ineffective, thus making only a limited contribution to petroleum accumulation in the basin. By contrast, syn-fold fractures abundant and highly effective, serving as efficient seepage channels for petroleum migration and forming essential geological conditions for fractured petroleum reservoirs in the Kuqa foreland basin. Although the density of natural fractures in the anticline cores is lower than that in the wings, the fracture aperture, permeability, and petroleum productivity are higher, consistent with exploration results from typical anticlinal petroleum reservoirs. Considering the current limitations of 3D laser scanning, such as the need to improve fracture recognition rates and the difficulty in identifying parameters like fracture aperture and filling coefficient, it remains necessary to develop feasible methods to further optimize and refine the technology.

  • 天然裂缝是改善含油气盆地低孔致密储层质量、提高油气产能的重要因素,特别是在中国中西部塔里木盆地北缘、准噶尔盆地南缘、四川盆地西北缘等大型叠合前陆盆地的低孔致密碎屑岩储层中,天然裂缝的发育往往是油气高产的必要条件[1-6]。在叠合前陆构造背景下,天然裂缝的形成机制复杂,现存的天然裂缝网络往往是多期裂缝叠加的结果[7],依靠有限的钻井资料很难窥探到天然裂缝发育规律的全貌,尤其是在深层—超深层领域,由于钻井成本、技术和周期等客观因素的影响,钻井资料更为有限,无法满足油气勘探的迫切需要。例如,2022年在塔里木盆地库车坳陷克拉2号构造上发现的克探1深层天然气藏,该气藏构造形态为完整的近东西向长轴背斜,含气层系为白垩系亚格列木组的裂缝性致密砂砾岩储层[8]。该气藏截至目前已有8口钻井,但均分布在背斜长轴上;同时该地区受古近系膏盐层信号屏蔽效应的影响,地震资料品质欠佳,利用地震属性来探究天然裂缝的空间分布也存在很大困难,导致背斜两翼的天然裂缝发育状态不明,制约了储层甜点评价及井位部署。因此,对于类似克探1这种稀井网条件下的油气藏,研究天然裂缝发育规律的有效方法是通过与具有相似构造样式的露头开展类比,利用露头裂缝发育模式指导井下天然裂缝的分布预测。露头裂缝发育模式建立的基础在于天然裂缝定量参数(包括产状、密度、开度等)的准确获取[9-10]。在传统的研究中,上述参数的获取主要采用人工测量,存在效率低、易出错、测量范围有限等显著缺点。基于三维激光扫描技术的露头储层构型建模及天然裂缝识别近年来发展迅速,与人工测量相比,具有效率高、测量范围广、不受自然光线明暗变化影响等特点,在野外进行露头数据扫描采集后,可回到室内进行数据处理,节省了大量的野外工作时间[11-15]。库车前陆盆地在南天山山前广泛出露中新生代地层,其中天然裂缝十分发育,并且在盆地内已发现克拉苏、迪那、迪北等大中型裂缝性砂岩油气藏,是研究天然裂缝发育类型、形成机制、演化过程及分布规律的优质场所。针对库车前陆盆地露头裂缝,前人已探索性地采用三维激光扫描技术开展了一些工作。例如,曾庆鲁等[14]对索罕村剖面下白垩统巴什基奇克组进行了天然裂缝的三维激光扫描与参数拾取,结合人工测量裂缝开度定量计算了裂缝面孔率,并分析了岩性、层厚等因素对裂缝发育的影响;曹婷[16]、王珂等[17]对米斯布拉克和秋里塔格地区的2个箱状背斜进行了天然裂缝三维激光扫描和识别,明确了天然裂缝的形成机制,并建立了发育模式,但天然裂缝参数的定量化表征不足;唐永等[15]利用三维激光扫描技术对库车河背斜北翼下白垩统巴西改组的天然裂缝进行了识别,并通过对比认为该技术获得的裂缝数据与人工获得裂缝数据误差基本控制在10%左右,具有较高的工业应用价值。总体来看,前人的工作主要集中在单个露头点的天然裂缝识别,模式也以定性为主,缺乏对某种特定构造样式下天然裂缝发育模式的构建和相关参数的定量表征,难以对井下天然裂缝的分布预测和地质建模起到有效的指导作用。笔者以库车前陆盆地为例,采用三维激光扫描技术对露头典型背斜构造的天然裂缝进行识别,并结合人工辅助测量及典型油气藏的实际地质资料,建立背斜型构造的天然裂缝发育模式,开展天然裂缝分布规律的定量表征,以期为背斜型油气藏的天然裂缝分布预测及地质建模研究提供参考。

  • 1 地质背景

  • 库车前陆盆地位于塔里木盆地北缘,是在晚古生代南天山洋闭合、塔里木克拉通与伊犁-中天山地体碰撞拼合背景下开始发育,经历了晚二叠世—三叠纪周缘前陆盆地、侏罗纪—古近纪断陷-坳陷和新近纪—第四纪陆内再生前陆盆地等构造演化阶段的叠合前陆盆地[18-19]。库车前陆盆地具有极为丰富的油气资源,含油气层位几乎涵盖了整个中新生界,包括中上三叠统(库探1气藏)、中下侏罗统(迪北、吐孜洛克、吐东等气藏)、下白垩统(克拉—克深、博孜—大北、中秋等气田)、古近系(迪那气田)、新近系(大宛齐油田、吐孜洛克气藏)等[20-23]。在上述含油气层位中,除新近系外,天然裂缝均是有效改善储层质量、提高油气产能的关键因素,因此开展相似露头天然裂缝建模对库车前陆盆地的油气勘探开发具有重要现实意义[24-27]。本次研究涉及库车河背斜和吐格尔明背斜2个露头剖面,均位于库车前陆盆地的东部(图1)。库车河和吐格尔明背斜均为燕山运动—喜马拉雅运动背景下发育起来的褶皱。库车河背斜核部出露地层为上侏罗统齐古组湖相泥岩、喀拉扎组冲积扇相薄层砾岩和下白垩统亚格列木组冲积扇相中—粗砾岩,舒善河组湖相泥岩、粉砂岩,两翼出露下白垩统巴西改组辫状河三角洲相细砂岩、(泥质)粉砂岩,巴什基奇克组冲积扇相砾岩及辫状河三角洲相砂岩以及新生代地层,地层对称且层序完整[28](图2(a))。吐格尔明背斜核部出露地层为上元古界成冰纪的变质结晶基底,主要岩性为云母石英片岩,是塔里木克拉通的一部分,局部出露上元古界埃迪卡拉纪的花岗岩侵入体,其上为中生界沉积盖层[29]。受差异构造变形及抬升剥蚀影响,吐格尔明背斜缺失古生界—中下三叠统,且背斜两翼出露的地层也不对称(图2(b))。其中南翼主要出露上三叠统黄山街组湖相泥岩、塔里奇克组辫状河三角洲相砂岩,下侏罗统阿合组辫状河三角洲相砂砾岩、阳霞组及克孜勒努尔组含煤岩系,与上覆新近系角度不整合接触;北翼主要出露阳霞组及克孜勒努尔组含煤岩系、中侏罗统恰克马克组湖相泥岩、上侏罗统齐古组和喀拉扎组、下白垩统亚格列木组和舒善河组,与上覆古近系角度不整合接触,上侏罗统和下白垩统的主要岩性与库车河背斜相似。

  • 图1 库车前陆盆地东部构造位置与构造特征

  • Fig.1 Structural location and features of eastern Kuqa foreland basin

  • 图2 库车前陆盆地库车河背斜及吐格尔明背斜周缘地质图

  • Fig.2 Geological map around Kuqa river anticline and Tugerming anticline with location of scan points within eastern Kuqa foreland basin

  • 2 三维激光扫描及天然裂缝识别方法

  • 基于三维激光扫描的天然裂缝识别主要包括以下步骤(图3):①选择需要扫描的露头点开展三维激光扫描,获得露头的高分辨率3D点云数据体,并对数据体进行预处理;②利用数据网格化技术,获得点云数据体的2D云密度和2D云质量数据;③利用张量投票技术,获取图像增强的裂缝信息;④利用最小外接矩形法对天然裂缝进行识别(裂缝矩形化技术);⑤提取识别出的天然裂缝参数。

  • 2.1 扫描仪器及参数

  • 三维激光扫描技术的原理是利用激光激发和接收的双程旅行时间进行测距和计算高程,同时结合激发仪坐标对激光点进行空间定位,获取每个点三维空间信息(XYZ),通过逐点逐层扫描最终形成三维数字露头[14]。本次研究采用的三维激光扫描仪器为奥地利Riegl公司的Terrestrial Laser Scanning Riegl VZ1000扫描仪,仪器主要部件包括GPS全球定位系统(采用实时动态载波相位差分RTK技术)、全站仪、水准仪、激光扫描仪、倾斜传感器、自动补偿器等,以及适配的高分辨率数码照相机,以便在进行激光扫描的同时,拍摄目标剖面的高清数码照片,作为后期天然裂缝识别的参考。扫描仪测量范围(扫描仪距露头点的距离)为1.5~1400 m,分辨率为5 mm,有效测量速率为122000点/s,视场角为360°(水平方向)×100°(垂直方向),其中仰角最大60°,俯角最大40°。

  • 图3 基于三维激光扫描的露头天然裂缝识别流程

  • Fig.3 Workflow of outcrop natural fracture identification based on 3D laser scanning

  • 2.2 点云数据扫描及数据网格化

  • 选择需要扫描的露头剖面,利用三维激光扫描仪对露头信息进行扫描采集。三维激光扫描的数据采集尽可能选择天然裂缝出露面为高角度—直立岩壁的剖面,并且出露面及附近不能有过多的风化坡积物、植被等遮挡。将采集得到的野外露头三维点云数据导入到与该型号扫描仪配套的Riscan PRO软件中,进行坐标处理、数据拼接、目标区域切割、噪点去除等一系列处理,最终得到露头三维原始点云数据。原始的点云数据是三维数据体,而在三维空间上并不利于对裂缝进行识别和参数提取,需要通过降维处理得到二维数据以便进行下一步处理。数据网格化即是根据密度和质量的不同,将非均匀分布的三维点云数据归算成规则网格中代表值的过程,利用颜色来区分每个网格中代表值的多少,进而将裂缝发育情况显示出来。

  • 数据网格化的具体步骤为:

  • (1)建立网格。根据点云数据设置合适的网格数以及网格大小。

  • (2)确定点云数据中每个点的位置,利用每个点的XY坐标,通过计算确定每个点在网格中的位置,即相同的XY坐标的点会放入同一个网格。计算公式为

  • i=Xi-Xmin/dx+1,
    (1)
  • j=Yi-Ymin/dy+1.
    (2)
  • 式中,i为网格的横坐标;j为网格的纵坐标;Xii=1,2,3,···)为每个点的横坐标;Yii=1,2,3,···)为每个点的纵坐标;XminX的最小值;YminY的最小值;dx为网格的宽;dy为网格的高。每当网格中放入一个点,该网格密度就增加一个值。由于野外露头点云数据体较为复杂,曲面拟合会掩盖掉许多裂缝细节,而采用网格化确定每个点的位置便可以充分将裂缝发育情况展示。

  • (3)进行基于Z差分的空白像素检测。由于点云数据体中每个点的深度是不同的,即Z值是不同的。前一步已经得到基于XY坐标的网格数据分布,将网格中Z值的最大值减去最小值即可得到二维的云质量分布情况,并导出二维云质量数据。

  • (4)进行XY平面上的空白像素检测,将第(2)步中得到的基于XY坐标的网格数据分布检索空白像素,由于每个网格中的点的数量存在差异,即可得到二维云密度分布情况,即二维云密度数据。

  • 2.3 天然裂缝识别方法

  • 天然裂缝是岩石受应力作用形成的宏观面状破裂,在岩体中有一定的“切深”,因此裂缝处的激光双程旅行时会显著长于裂缝两侧或一侧岩石的激光双程旅行时,通过特定的算法对扫描得到的点云数据进行处理,强化天然裂缝的显示特征,再通过张量投票和最小外接矩形法裂缝识别这2项关键技术,并结合扫描同步拍摄的高清数码照片,利用人机交互的方式实现天然裂缝的识别。张量投票是一种鲁棒性很强的提取图像显要特征的方法,其特点在于采用张量投票叠加的方式来增强待提取特征,用张量矩阵的特征值分解来解释投票结果,能从带有强噪声、离群点的点云信息中推理隐含的结构特征,将人类视觉看到的信息通过机器算法将其可视化。该算法中,领域信息通过投票的方式聚集在一起,而取向信息通过矢量场的计算规则进行估计,以实现数据间的通信,通过张量投票的方法对裂缝特征进行挖掘,实现对裂缝具有的边界进行增强处理,并且可去除大面积背景噪音[30]。最小外接矩形法裂缝识别首先利用格雷厄姆算法求解目标图像的凸壳点集,再通过边界旋转确定最小外接矩形,进而达到裂缝识别的目的。对于露头剖面上发育的天然裂缝,绝大多数的裂缝面都会有或多或少的出露,即裂缝两侧的岩石会有一个“高程差”,只要在出露的裂缝面上确定3个数据点空间坐标,即可利用“三点共面”的原理,确定裂缝面的数学方程,最终获得该裂缝面的产状信息。因此,在利用最小外接矩形识别目标露头的天然裂缝之后,可以对裂缝的产状以及密度、长度等参数进行提取,进而分析天然裂缝的特征与发育规律。按照天然裂缝的分级方案,露头天然裂缝多属于Ⅰ级宏观裂缝,尺度(包括开度和长度)变化范围较大,开度可从百微米级到毫米级、厘米级,长度可从厘米级到米级、数十米级甚至百米级[31]。利用三维激光扫描数据及上述识别算法,可以对不同尺度的天然裂缝进行识别,并且天然裂缝尺度越大,识别准确率越高。

  • 3 库车前陆盆地天然裂缝识别

  • 针对库车河背斜的天然裂缝三维激光扫描层位集中在古近系库姆格列木群底砾岩(图2(b)中SKR1)和下白垩统砂岩(图2(b)中SKR2~SKR6),典型天然裂缝照片如图4所示。在该背斜共识别出181条天然裂缝,地层产状复平后的天然裂缝倾角为10°~90°,平均为76°,其中倾角大于等于45°的高角度裂缝占到了总裂缝数的94%(图5(a)~(c),表1,图6)。背斜不同构造部位的天然裂缝走向也有一定差异,南北两翼共识别出89条天然裂缝,其中NW和NE走向的2组共轭裂缝和近NS走向裂缝共71条,占两翼天然裂缝总数的79.8%,近EW走向的天然裂缝共18条,占两翼天然裂缝总数的20.2%;背斜核部共识别出92条天然裂缝,其中近EW走向的天然裂缝为31条,占核部天然裂缝总数的比例增加至29.5%(图6)。

  • 图4 库车河背斜典型天然裂缝数码照片

  • Fig.4 Digital photographs of typical natural fractures on Kuqa river anticline

  • 图5 库车河背斜与吐格尔明背斜典型扫描点裂缝的识别与提取

  • Fig.5 Fracture identification and extraction of typical scan point on Kuqa river anticline and Tugerming anticline

  • 表1 库车河背斜天然裂缝识别结果

  • Table1 Identification results of natural fractures on Kuqa river anticline

  • 注:括号内的倾角为平均值。

  • 图6 库车河背斜天然裂缝产状

  • Fig.6 Occurence of natural fractures on Kuqa river anticline

  • 针对吐格尔明背斜的天然裂缝三维激光扫描层位集中在下白垩统亚格列木组(图2(b)中SYX1)和侏罗系(图2(c)中SYX2~SYX9)砂(砾)岩,典型天然裂缝照片如图7所示。在该背斜共识别出147条天然裂缝,地层产状复平后的天然裂缝倾角为10°~90°,平均为73°,其中倾角不低于45°的高角度裂缝占到了总裂缝数的96%(图5(d)~(f),表2,图8)。与库车河背斜类似,吐格尔明背斜不同构造部位的天然裂缝走向也有差异,南北两翼共识别出131条天然裂缝,其中NW和NE走向的2组共轭缝和近NS走向裂缝共87条,占两翼天然裂缝总数的66.4%,近EW走向的天然裂缝共44条,占两翼天然裂缝总数的33.6%;背斜核部共识别出16条天然裂缝,其中近EW走向的天然裂缝为7条,占核部天然裂缝总数的比例增加至43.8%(图8)。

  • 图7 吐格尔明背斜典型天然裂缝数码照片

  • Fig.7 Digital photographs of typical natural fractures on Tugerming anticline

  • 为了验证三维激光扫描技术识别天然裂缝产状的可靠程度,在吐格尔明背斜南翼阿合组多个测量点开展了人工裂缝实测,并与SKR8的天然裂缝识别结果进行了对比。对比结果显示,三维激光扫描识别的天然裂缝走向和人工实测的裂缝走向均以NNE30°左右的一组裂缝为主,此外还发育少量其他走向裂缝,倾角也均以中—高角度(大于等于45°)为主,并以大于等于75°为优势倾角,表明三维激光扫描识别的天然裂缝具有较高的可靠性。

  • 图8 吐格尔明背斜天然裂缝识别结果

  • Fig.8 Identification of natural fractures on Tugerming anticline

  • 表2 吐格尔明背斜天然裂缝识别结果

  • Table2 Identification results of natural fractures on Tugerming anticline

  • 注:括号内的倾角为平均值。

  • 4 讨论

  • 4.1 天然裂缝发育模式与演化过程

  • 库车河和吐格尔明背斜的三维激光扫描点在背斜核部和两翼均有分布(图2),可以对整个背斜构造的天然裂缝特征进行整体控制,进而分析天然裂缝的分布规律。根据前述2个背斜的天然裂缝识别结果,并根据天然裂缝力学类型、交错切割关系及充填程度的人工测量结果对天然裂缝进行分期配套,结合库车地区构造演化史及背斜型油气藏的实际资料[91525],建立了库车前陆盆地背斜型构造的天然裂缝发育模式,共发育2期5类天然裂缝(图9、表3)。其中前褶皱期形成的天然裂缝数量少,且多数已被碳酸盐、硅质等胶结充填成为无效裂缝,这类裂缝在地层条件下无法作为油气的有效渗流通道,相反还可能成为油气的渗流屏障,因此对油气成藏的贡献较低。同褶皱期天然裂缝数量较多,多数为半充填或未充填,这类裂缝在地层条件下可作为油气高效渗流通道,是库车地区形成裂缝性油气藏的重要地质条件。在同褶皱期形成的天然裂缝中,网状裂缝(Ⅱc)发育位置较局限,主要分布在背斜核部下端。该类裂缝在露头难以观察到,但在库车地区多个背斜型油气藏中均可见到此类裂缝的发育;此外该类裂缝发育位置在古构造应力场数值模拟中表现为局部的低应力区,其应力-裂缝耦合机制还需开展进一步的深入研究。

  • 图9 库车前陆盆地背斜型构造的天然裂缝发育模式

  • Fig.9 Development model of natural fractures for anticlines in Kuqa foreland basin

  • 表3 库车前陆盆地天然裂缝发育特征

  • Table3 Development characteristics of natural fractures in Kuqa foreland basin

  • 4.2 天然裂缝密度与渗透性分布规律

  • 库车前陆盆地的天然裂缝以构造成因裂缝为主,前人研究证实,构造成因的裂缝密度通常与古构造应力有着良好的正相关关系。库车河背斜天然裂缝密度统计结果表明,背斜前翼(南翼)裂缝密度最高,可达9.7 m-1,其次为后翼(北翼),裂缝密度为2.1 m-1,核部裂缝密度最低,为0.8 m-1。前已述及,喜马拉雅中—晚期是库车前陆盆地天然裂缝最主要的形成时期,同时也是古构造应力最强的时期。根据张惠良等[32]在库车河背斜白垩系的最大古构造应力声发射测试结果,开展了库车河背斜简化模型的古构造应力场数值模拟,模拟结果显示最大古构造应力及应力强度的分布与天然裂缝密度的分布均具有很好的一致性(图10)。

  • 图10 库车河背斜简化模型的最大古构造应力及应力强度数值模拟结果

  • Fig.10 Numerical simulation results of the maximum palaeo tectonic stress and stress intensity for a simplified model of Kuqa river anticline

  • 由于三维激光扫描仪分辨率及数据处理技术的限制,目前对露头裂缝开度还不能很好地识别,仍需采用人工测量方式获得。人工实测结果表明,库车河背斜核部的天然裂缝开度可达5 mm,而南北两翼的天然裂缝开度一般为0.3~0.6 mm,这与背斜核部曲率大、张性应变强,而翼部地层相对平缓,曲率小、挤压应变强有关[33]

  • 库车前陆盆地的克深、博孜—大北、迪那等大中型天然气藏均以背斜构造为主,因而前人多以库车河等典型背斜的天然裂缝发育特征作为井下裂缝研究的类比对象。例如王振宇等[33]采用库车河背斜裂缝密度、开度等参数的表征为参考,结合单井实际资料建立了克深2气藏的天然裂缝地质模型;张荣虎等[34]结合秋里塔格构造带箱状背斜的裂缝发育模式,基于构造应力场数值模拟对克深8气藏的天然裂缝参数进行了模拟计算,并建立了克深8气藏裂缝-孔隙双重介质储层的地质模型;王珂等[25]基于库车河背斜裂缝发育模式,结合单井成像测井裂缝解释结果,开展了大北12气藏的中小尺度裂缝建模。综合前述库车河背斜和吐格尔明背斜天然裂缝的分布规律表明,库车前陆盆地背斜构造的核部天然裂缝密度比两翼要低,但开度显著高于两翼。天然裂缝渗透率的计算公式表明,裂缝渗透率与裂缝密度的一次方成正比,而与裂缝开度的三次方成正比,因此开度对裂缝渗透率的影响更为显著。这就使得背斜核部的天然裂缝渗透率往往要高于两翼,相应的油气产能也会高于两翼,与库车地区典型背斜型油气藏的勘探实践基本一致[35-38]。例如位于克拉苏构造带的克深2气藏,主要含气储层为下白垩统巴什基奇克组的裂缝性致密砂岩。该气藏为近东西走向的长轴背斜构造,长约57 km,南北宽约5 km,与库车河及吐格尔明背斜的构造形态有较好的相似性,在一定程度上可以进行类比[733]。克深2气藏的KS2-2-4井和KS2-2-5井分别位于背斜的核部和前翼,前者与后者相比天然裂缝密度低,但裂缝开度大,因此天然气产能显著高于后者(表4)。

  • 天然裂缝渗透率的计算公式为

  • k=106b3D/12.
    (3)
  • 式中,k为天然裂缝渗透率,10-3 μm2b为裂缝有效开度,mm;D为天然裂缝密度,m-1

  • 表4中天然气无阻流量的计算公式为

  • Q=6Pd1+481-pf/ps2-1.
    (4)
  • 式中,Q为天然气无阻流量,104 m3/d;Pd为折日产量,由钻井实际测试结果获得,104 m3pf为流压,MPa;ps为静压,MPa。

  • 表4 克深2气藏不同构造位置的天然裂缝发育情况与天然气产量

  • Table4 Development of natural fractures and gas production for different structural position of Keshen-2 gas reservoir

  • 5 结论与展望

  • 库车前陆盆地背斜型构造的天然裂缝以中—高角度为主,发育前褶皱期和同褶皱期2期、5类天然裂缝。前褶皱期天然裂缝数量少,且多数为无效裂缝,因此对油气成藏的贡献较低,而同褶皱期天然裂缝数量较多,且以半充填或未充填为主,可作为油气高效渗流通道,是形成裂缝性油气藏的重要地质条件。背斜型构造的核部天然裂缝密度比两翼要低,但开度显著高于两翼。由于开度对裂缝渗透率的影响更为显著,使得背斜核部的天然裂缝渗透率和油气产能也高于两翼,与库车地区典型背斜型油气藏的勘探实践基本一致。作为一种新技术,三维激光扫描识别天然裂缝还存在很多需要改进之处。由于扫描仪器分辨率和数据处理技术的限制,大量的小尺度裂缝和部分较大尺度裂缝还不能很好地识别,总体识别率仅约为85%;开度和充填系数等影响天然裂缝有效性的重要参数识别也存在较大困难,仍需依靠人工辅助测量。另一方面,露头与井下的构造样式往往不完全一致,天然裂缝分布模式与井下很难达到可以直接类比的程度,缺少露头天然裂缝参数与岩石应力-应变耦合机制的深入研究以及基于此的井下裂缝分布预测,这是今后需要重点关注和解决的科学问题。

  • 参考文献

    • [1] 丁文龙,王兴华,胡秋嘉,等.致密砂岩储层裂缝研究进展[J].地球科学进展,2015,30(7):737-750.DING Wenlong,WANG Xinghua,HU Qiujia,et al.Progress in tight sandstone reservoir fractures research[J].Advances in Earth Science,2015,30(7):737-750.

    • [2] 汪如军,赵力彬,张永灵.基于最小耗能原理的库车坳陷超深致密砂岩裂缝定量预测[J].中国石油大学学报(自然科学版),2022,46(5):23-35.WANG Rujun,ZHAO Libin,ZHANG Yongling.Quantitative fracture prediction of ultra-deep tight sandstone in Kuqa Depression based on principle of minimum energy consumption[J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(5):23-35.

    • [3] 司学强,彭博,庞志超,等.储集层多尺度裂缝特征及控制因素:以准噶尔盆地南缘侏罗系—白垩系为例[J].中国矿业大学学报,2022,51(4):731-741.SI Xueqiang,PENG Bo,PANG Zhichao,et al.Characteristics and controlling factors of multi-scale fractures in reservoir:a Jurassic-Cretaceous case from the southern margin of Junggar Basin[J].Journal of China University of Mining & Technology,2022,51(4):731-741.

    • [4] 杨连刚,熊冉,康婷婷,等.塔里木盆地沙井子断裂带油气地质条件及勘探潜力[J].海相油气地质,2023,28(3):280-290.YANG Liangang,XIONG Ran,KANG Tingting,et al.Oil and gas geological conditions and exploration potential of Shajingzi fault belt in Tarim Basin[J].Marine Origin Petroleum Geology,2023,28(3):280-290.

    • [5] 王大鹏,孔祥宇,田琨,等.2023全球重大油气发现及2024勘探展望[J].世界石油工业,2024,31(4):48-57.WANG Dapeng,KONG Xiangyu,TIAN Kun,et al.Global major oil and gas discoveries in 2023 and exploration outlook in 2024[J].World Petroleum Industry,2024,31(4):48-57.

    • [6] 贾承造.含油气盆地深层—超深层油气勘探开发的科学技术问题[J].中国石油大学学报(自然科学版),2023,47(5):1-12.JIA Chengzao.Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(5):1-12.

    • [7] 顾凯凯.致密砂岩储层多期裂缝定量预测研究:以库车坳陷克深2气田为例[D].青岛:中国石油大学(华东),2018:1-66.GU Kaikai.Quantitative prediction of multi-phase fractures in tight sandstone reservoirs:example of Keshen 2 gas field in Kuqa depression [D].Qingdao:China University of Petroleum(Huadong),2018:1-66.

    • [8] 何巧林,王珂,胡春雷,等.深层致密砂砾岩储层构造裂缝分布规律与有效性评价:以库车坳陷KT1气藏亚格列木组为例[J].海相油气地质,2024,29(4):437-447.HE Qiaolin,WANG Ke,HU Chunlei,et al.Distribution regularity and effectiveness evaluation of structural fractures in deep tight glutenite reservoir:a case study of KT-1 gas reservoir in Kuqa Depression,Tarim Basin[J].Marine Origin Petroleum Geology,2024,29(4):437-447.

    • [9] 刘春,张荣虎,张惠良,等.塔里木盆地库车前陆冲断带不同构造样式裂缝发育规律:证据来自野外构造裂缝露头观测[J].天然气地球科学,2017,28(1):52-61.LIU Chun,ZHANG Ronghu,ZHANG Huiliang,et al.Fracture development of different structural styles in Kuqa foreland thrust belt:from outcrop observation of structural fracture[J].Natural Gas Geoscience,2017,28(1):52-61.

    • [10] 马存飞,孙文静,曾令鹏,等.沧东凹陷孔二段页岩中基于岩心裂缝观测的构造裂缝规模解析[J].中国石油大学学报(自然科学版),2023,47(4):1-11.MA Cunfei,SUN Wenjing,ZENG Lingpeng,et al.Mathematical analysis of structural fracture scale in shale based on core fracture observation of the second member of Kongdian Formation in Cangdong Sag[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(4):1-11.

    • [11] WILSON C E,AYDIN A,KARIMI-FARD M,et al.From outcrop to flow simulation:constructing discrete fracture models from a LIDAR survey[J].AAPG Bulletin,2011,95(11):1883-1905.

    • [12] HODGETTS D.Laser scanning and digital outcrop geology in the petroleum industry:a review[J].Marine and Petroleum Geology,2013,46:335-354.

    • [13] CASINI G,HUNT D W,MONSEN E,et al.Fracture characterization and modeling from virtual outcrops[J].AAPG Bulletin,2016,100(1):41-61.

    • [14] 曾庆鲁,张荣虎,卢文忠,等.基于三维激光扫描技术的裂缝发育规律和控制因素研究:以塔里木盆地库车前陆区索罕村露头剖面为例[J].天然气地球科学,2017,28(3):397-409.ZENG Qinglu,ZHANG Ronghu,LU Wenzhong,et al.Fracture development characteristics and controlling factors based on 3D laser scanning technology:an outcrop case study of Suohan village,Kuqa foreland area,Tarim Basin[J].Natural Gas Geoscience,2017,28(3):397-409.

    • [15] 唐永,肖安成,唐文军,等.基于三维激光扫描技术的裂缝随机模拟:以库车坳陷库车河剖面为例[J].地球科学,2023,48(2):640-656.TANG Yong,XIAO Ancheng,TANG Wenjun,et al.Stochastic fracture simulation based on three-dimensional laser scan technology:a case study of Kuqa River outcrop in Kuqa Depression[J].Earth Science,2023,48(2):640-656.

    • [16] 曹婷.库车坳陷东部碎屑岩层新生代断层传播褶皱过程中的裂缝发育模式[D].杭州:浙江大学,2018.CAO Ting.Fracture patterns during the Cenozoic fault-propagation folding process:insights from the clastic rock of eastern Kuqa depression[D].Hangzhou:Zhejiang University,2018.

    • [17] 王珂,张荣虎,曾庆鲁,等.塔里木盆地库车坳陷秋里塔格构造带箱形褶皱形成机制及油气勘探意义[J].天然气地球科学,2022,33(9):1384-1396.WANG Ke,ZHANG Ronghu,ZENG Qinglu,et al.Formation mechanism of the box fold and its significance in the Qiulitage structural belt of Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2022,33(9):1384-1396.

    • [18] 吴高奎,林畅松,刘永福,等.库车-塔北地区中生代关键变革期主要不整合及古隆起地貌特征[J].石油与天然气地质,2019,40(4):763-777.WU Gaokui,LIN Changsong,LIU Yongfu,et al.Characteristics of major unconformities and paleo-geomorphology during the Mesozoic key transformation stages in Kuqa-Tabei area[J].Oil & Gas Geology,2019,40(4):763-777.

    • [19] 杨学文,王清华,李勇,等.库车前陆冲断带博孜—大北万亿方大气区的形成机制[J].地学前缘,2022,29(6):175-187.YANG Xuewen,WANG Qinghua,LI Yong,et al.Formation mechanism of the Bozi-Dabei trillion cubic natural gas field,Kuqa foreland thrust belt[J].Earth Science Frontiers,2022,29(6):175-187.

    • [20] 魏国齐,张荣虎,智凤琴,等.库车坳陷东部中生界构造-岩性地层油气藏形成条件与勘探方向[J].石油学报,2021,42(9):1113-1125.WEI Guoqi,ZHANG Ronghu,ZHI Fengqin,et al.Formation conditions and exploration directions of Mesozoic structural-lithologic stratigraphic reservoirs in the eastern Kuqa Depression[J].Acta Petrolei Sinica,2021,42(9):1113-1125.

    • [21] 智凤琴,张荣虎,余朝丰.库车坳陷东部阳霞凹陷侏罗系石油地质条件与勘探方向[J].海相油气地质,2023,28(2):186-195.ZHI Fengqin,ZHANG Ronghu,YU Chaofeng.Jurassic petroleum geological conditions and exploration direction in Yangxia Sag,eastern Kuqa Depression[J].Marine Origin Petroleum Geology,2023,28(2):186-195.

    • [22] 朱光有,杨海军,张斌,等.塔里木盆地迪那2大型凝析气田的地质特征及其成藏机制[J].岩石学报,2012,28(8):2479-2492.ZHU Guangyou,YANG Haijun,ZHANG Bin,et al.The geological feature and origin of Dina 2 large gas field in Kuqa Depression,Tarim Basin[J].Acta Petrologica Sinica,2012,28(8):2479-2492.

    • [23] 杨海军,李勇,唐雁刚,等.塔里木盆地克深气田成藏条件及勘探开发关键技术[J].石油学报,2021,42(3):399-414.YANG Haijun,LI Yong,TANG Yangang,et al.Accumulation conditions,key exploration and development technologies for Keshen gas field in Tarim Basin[J].Acta Petrolei Sinica,2021,42(3):399-414.

    • [24] 巩磊,高铭泽,曾联波,等.影响致密砂岩储层裂缝分布的主控因素分析:以库车前陆盆地侏罗系—新近系为例[J].天然气地球科学,2017,28(2):199-208.GONG Lei,GAO Mingze,ZENG Lianbo,et al.Controlling factors on fracture development in the tight sandstone reservoirs:a case study of Jurassic-Neogene in the Kuqa foreland basin[J].Natural Gas Geoscience,2017,28(2):199-208.

    • [25] 王珂,张荣虎,李宝刚,等.致密砂岩储层构造裂缝特征及地质建模:以塔里木盆地库车坳陷大北12气藏为例[J].海相油气地质,2023,28(1):72-82.WANG Ke,ZHANG Ronghu,LI Baogang,et al.Characteristics and geological modeling of structural fractures in tight sandstone reservoir:taking Dabei-12 gas reservoir in Kuqa Depression,Tarim Basin as an example[J].Marine Origin Petroleum Geology,2023,28(1):72-82.

    • [26] 王珂,杨海军,张惠良,等.超深层致密砂岩储层构造裂缝特征与有效性:以塔里木盆地库车坳陷克深8气藏为例[J].石油与天然气地质,2018,39(4):719-729.WANG Ke,YANG Haijun,ZHANG Huiliang,et al.Characteristics and effectiveness of structural fractures in ultra-deep tight sandstone reservoir:a case study of Keshen-8 gas pool in Kuqa Depression,Tarim Basin[J].Oil & Gas Geology,2018,39(4):719-729.

    • [27] 袁静,曹宇,李际,等.库车坳陷迪那气田古近系裂缝发育的多样性与差异性[J].石油与天然气地质,2017,38(5):840-850.YUAN Jing,CAO Yu,LI Ji,et al.Diversities and disparities of fracture systems in the Paleogene in DN gas field,Kuqa Depression,Tarim Basin[J].Oil & Gas Geology,2017,38(5):840-850.

    • [28] 郭超,张志勇,吴林,等.中新生代天山剥蚀与塔里木盆地北缘沉积耦合过程:新疆库车河剖面的低温热年代学证据[J].地球科学,2022,47(9):3417-3430.GUO Chao,ZHANG Zhiyong,WU Lin,et al.Mesozoic-Cenozoic coupling process of Tianshan denudation and sedimentation in the northern margin of the Tarim Basin:evidence from low-temperature thermochronology(Kuqa river section,Xinjiang)[J].Earth Science,2022,47(9):3417-3430.

    • [29] 何登发,袁航,李涤,等.吐格尔明背斜核部花岗岩的年代学、地球化学与构造环境及其对塔里木地块北缘古生代伸展聚敛旋回的揭示[J].岩石学报,2011,27(1):133-146.HE Dengfa,YUAN Hang,LI Di,et al.Chronology,geochemistry and tectonic setting of granites at the core of Tugerming anticline,Tarim Basin:indications of Paleozoic extensional and compressional cycle at the northern margin of Tarim continental block[J].Acta Petrologica Sinica,2011,27(1):133-146.

    • [30] 史文中,田岩,黄应,等.基于张量投票的激光扫描数据修复方法[J].系统工程与电子技术,2009,31(11):2723-2727.SHI Wenzhong,TIAN Yan,HUANG Ying,et al.Laser scanning data inpainting method based on tensor voting technique[J].Systems Engineering and Electronics,2009,31(11):2723-2727.

    • [31] 刘春,张荣虎,张惠良,等.库车前陆冲断带多尺度裂缝成因及其储集意义[J].石油勘探与开发,2017,44(3):463-472.LIU Chun,ZHANG Ronghu,ZHANG Huiliang,et al.Genesis and reservoir significance of multi-scale natural fractures in Kuqa foreland thrust belt,Tarim Basin,NW China[J].Petroleum Exploration and Development,2017,44(3):463-472.

    • [32] 张惠良,张荣虎,杨海军,等.超深层裂缝-孔隙型致密砂岩储集层表征与评价:以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J].石油勘探与开发,2014,41(2):158-167.ZHANG Huiliang,ZHANG Ronghu,YANG Haijun,et al.Characterization and evaluation of ultra-deep fracture-pore tight sandstone reservoirs:a case study of Cretaceous Bashijiqike Formation in Kelasu tectonic zone in Kuqa foreland basin,Tarim,NW China[J].Petroleum Exploration and Development,2014,41(2):158-167.

    • [33] 王振宇,刘超,张云峰,等.库车坳陷K区块冲断带深层白垩系致密砂岩裂缝发育规律、控制因素与属性建模研究[J].岩石学报,2016,32(3):865-876.WANG Zhenyu,LIU Chao,ZHANG Yunfeng,et al.A study of fracture development,controlling factor and property modeling of deep-lying tight sandstone in Cretaceous thrust belt K region of Kuqa Depression[J].Acta Petrologica Sinica,2016,32(3):865-876.

    • [34] 张荣虎,王珂,王俊鹏,等.塔里木盆地库车坳陷克深构造带克深8区块裂缝性低孔砂岩储层地质模型[J].天然气地球科学,2018,29(9):1264-1273.ZHANG Ronghu,WANG Ke,WANG Junpeng,et al.Reservoir geological model of fracture low porosity sandstone of Keshen 8 wellblock in Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2018,29(9):1264-1273.

    • [35] FENG Jianwei,REN Qiqiang,XU Ke.Using geomechanical method to predict tectonic fractures in low-permeability sandstone reservoirs [J].Advances in Earth Science,2016,31(9):946-967.

    • [36] 杨海军,张荣虎,杨宪彰,等.超深层致密砂岩构造裂缝特征及其对储层的改造作用:以塔里木盆地库车坳陷克深气田白垩系为例[J].天然气地球科学,2018,29(7):942-950.YANG Haijun,ZHANG Ronghu,YANG Xianzhang,et al.Characteristics and reservoir improvement effect of structural fracture in ultra-deep tight sandstone reservoir:a case study of Keshen Gasfield,Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2018,29(7):942-950.

    • [37] 王珂,张荣虎,方晓刚,等.超深层裂缝—孔隙型致密砂岩储层特征与属性建模:以库车坳陷克深8气藏为例[J].中国石油勘探,2018,23(6):87-96.WANG Ke,ZHANG Ronghu,FANG Xiaogang,et al.Characteristics and property modeling of ultra-deep fractured-porous tight sandstone reservoir:a case study on the Keshen 8 gas reservoir in Kuqa Depression[J].China Petroleum Exploration,2018,23(6):87-96.

    • [38] 史超群,王佐涛,朱文慧,等.塔里木盆地库车坳陷克拉苏构造带大北地区超深储层裂缝特征及其对储层控制作用[J].天然气地球科学,2020,31(12):1687-1699.SHI Chaoqun,WANG Zuotao,ZHU Wenhui,et al.Fracture characteristic and its impact on reservoir quality of ultra-deep reservoir in Dabei region,Kelasu tectonic belt,Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2020,31(12):1687-1699.

  • 参考文献

    • [1] 丁文龙,王兴华,胡秋嘉,等.致密砂岩储层裂缝研究进展[J].地球科学进展,2015,30(7):737-750.DING Wenlong,WANG Xinghua,HU Qiujia,et al.Progress in tight sandstone reservoir fractures research[J].Advances in Earth Science,2015,30(7):737-750.

    • [2] 汪如军,赵力彬,张永灵.基于最小耗能原理的库车坳陷超深致密砂岩裂缝定量预测[J].中国石油大学学报(自然科学版),2022,46(5):23-35.WANG Rujun,ZHAO Libin,ZHANG Yongling.Quantitative fracture prediction of ultra-deep tight sandstone in Kuqa Depression based on principle of minimum energy consumption[J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(5):23-35.

    • [3] 司学强,彭博,庞志超,等.储集层多尺度裂缝特征及控制因素:以准噶尔盆地南缘侏罗系—白垩系为例[J].中国矿业大学学报,2022,51(4):731-741.SI Xueqiang,PENG Bo,PANG Zhichao,et al.Characteristics and controlling factors of multi-scale fractures in reservoir:a Jurassic-Cretaceous case from the southern margin of Junggar Basin[J].Journal of China University of Mining & Technology,2022,51(4):731-741.

    • [4] 杨连刚,熊冉,康婷婷,等.塔里木盆地沙井子断裂带油气地质条件及勘探潜力[J].海相油气地质,2023,28(3):280-290.YANG Liangang,XIONG Ran,KANG Tingting,et al.Oil and gas geological conditions and exploration potential of Shajingzi fault belt in Tarim Basin[J].Marine Origin Petroleum Geology,2023,28(3):280-290.

    • [5] 王大鹏,孔祥宇,田琨,等.2023全球重大油气发现及2024勘探展望[J].世界石油工业,2024,31(4):48-57.WANG Dapeng,KONG Xiangyu,TIAN Kun,et al.Global major oil and gas discoveries in 2023 and exploration outlook in 2024[J].World Petroleum Industry,2024,31(4):48-57.

    • [6] 贾承造.含油气盆地深层—超深层油气勘探开发的科学技术问题[J].中国石油大学学报(自然科学版),2023,47(5):1-12.JIA Chengzao.Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(5):1-12.

    • [7] 顾凯凯.致密砂岩储层多期裂缝定量预测研究:以库车坳陷克深2气田为例[D].青岛:中国石油大学(华东),2018:1-66.GU Kaikai.Quantitative prediction of multi-phase fractures in tight sandstone reservoirs:example of Keshen 2 gas field in Kuqa depression [D].Qingdao:China University of Petroleum(Huadong),2018:1-66.

    • [8] 何巧林,王珂,胡春雷,等.深层致密砂砾岩储层构造裂缝分布规律与有效性评价:以库车坳陷KT1气藏亚格列木组为例[J].海相油气地质,2024,29(4):437-447.HE Qiaolin,WANG Ke,HU Chunlei,et al.Distribution regularity and effectiveness evaluation of structural fractures in deep tight glutenite reservoir:a case study of KT-1 gas reservoir in Kuqa Depression,Tarim Basin[J].Marine Origin Petroleum Geology,2024,29(4):437-447.

    • [9] 刘春,张荣虎,张惠良,等.塔里木盆地库车前陆冲断带不同构造样式裂缝发育规律:证据来自野外构造裂缝露头观测[J].天然气地球科学,2017,28(1):52-61.LIU Chun,ZHANG Ronghu,ZHANG Huiliang,et al.Fracture development of different structural styles in Kuqa foreland thrust belt:from outcrop observation of structural fracture[J].Natural Gas Geoscience,2017,28(1):52-61.

    • [10] 马存飞,孙文静,曾令鹏,等.沧东凹陷孔二段页岩中基于岩心裂缝观测的构造裂缝规模解析[J].中国石油大学学报(自然科学版),2023,47(4):1-11.MA Cunfei,SUN Wenjing,ZENG Lingpeng,et al.Mathematical analysis of structural fracture scale in shale based on core fracture observation of the second member of Kongdian Formation in Cangdong Sag[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(4):1-11.

    • [11] WILSON C E,AYDIN A,KARIMI-FARD M,et al.From outcrop to flow simulation:constructing discrete fracture models from a LIDAR survey[J].AAPG Bulletin,2011,95(11):1883-1905.

    • [12] HODGETTS D.Laser scanning and digital outcrop geology in the petroleum industry:a review[J].Marine and Petroleum Geology,2013,46:335-354.

    • [13] CASINI G,HUNT D W,MONSEN E,et al.Fracture characterization and modeling from virtual outcrops[J].AAPG Bulletin,2016,100(1):41-61.

    • [14] 曾庆鲁,张荣虎,卢文忠,等.基于三维激光扫描技术的裂缝发育规律和控制因素研究:以塔里木盆地库车前陆区索罕村露头剖面为例[J].天然气地球科学,2017,28(3):397-409.ZENG Qinglu,ZHANG Ronghu,LU Wenzhong,et al.Fracture development characteristics and controlling factors based on 3D laser scanning technology:an outcrop case study of Suohan village,Kuqa foreland area,Tarim Basin[J].Natural Gas Geoscience,2017,28(3):397-409.

    • [15] 唐永,肖安成,唐文军,等.基于三维激光扫描技术的裂缝随机模拟:以库车坳陷库车河剖面为例[J].地球科学,2023,48(2):640-656.TANG Yong,XIAO Ancheng,TANG Wenjun,et al.Stochastic fracture simulation based on three-dimensional laser scan technology:a case study of Kuqa River outcrop in Kuqa Depression[J].Earth Science,2023,48(2):640-656.

    • [16] 曹婷.库车坳陷东部碎屑岩层新生代断层传播褶皱过程中的裂缝发育模式[D].杭州:浙江大学,2018.CAO Ting.Fracture patterns during the Cenozoic fault-propagation folding process:insights from the clastic rock of eastern Kuqa depression[D].Hangzhou:Zhejiang University,2018.

    • [17] 王珂,张荣虎,曾庆鲁,等.塔里木盆地库车坳陷秋里塔格构造带箱形褶皱形成机制及油气勘探意义[J].天然气地球科学,2022,33(9):1384-1396.WANG Ke,ZHANG Ronghu,ZENG Qinglu,et al.Formation mechanism of the box fold and its significance in the Qiulitage structural belt of Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2022,33(9):1384-1396.

    • [18] 吴高奎,林畅松,刘永福,等.库车-塔北地区中生代关键变革期主要不整合及古隆起地貌特征[J].石油与天然气地质,2019,40(4):763-777.WU Gaokui,LIN Changsong,LIU Yongfu,et al.Characteristics of major unconformities and paleo-geomorphology during the Mesozoic key transformation stages in Kuqa-Tabei area[J].Oil & Gas Geology,2019,40(4):763-777.

    • [19] 杨学文,王清华,李勇,等.库车前陆冲断带博孜—大北万亿方大气区的形成机制[J].地学前缘,2022,29(6):175-187.YANG Xuewen,WANG Qinghua,LI Yong,et al.Formation mechanism of the Bozi-Dabei trillion cubic natural gas field,Kuqa foreland thrust belt[J].Earth Science Frontiers,2022,29(6):175-187.

    • [20] 魏国齐,张荣虎,智凤琴,等.库车坳陷东部中生界构造-岩性地层油气藏形成条件与勘探方向[J].石油学报,2021,42(9):1113-1125.WEI Guoqi,ZHANG Ronghu,ZHI Fengqin,et al.Formation conditions and exploration directions of Mesozoic structural-lithologic stratigraphic reservoirs in the eastern Kuqa Depression[J].Acta Petrolei Sinica,2021,42(9):1113-1125.

    • [21] 智凤琴,张荣虎,余朝丰.库车坳陷东部阳霞凹陷侏罗系石油地质条件与勘探方向[J].海相油气地质,2023,28(2):186-195.ZHI Fengqin,ZHANG Ronghu,YU Chaofeng.Jurassic petroleum geological conditions and exploration direction in Yangxia Sag,eastern Kuqa Depression[J].Marine Origin Petroleum Geology,2023,28(2):186-195.

    • [22] 朱光有,杨海军,张斌,等.塔里木盆地迪那2大型凝析气田的地质特征及其成藏机制[J].岩石学报,2012,28(8):2479-2492.ZHU Guangyou,YANG Haijun,ZHANG Bin,et al.The geological feature and origin of Dina 2 large gas field in Kuqa Depression,Tarim Basin[J].Acta Petrologica Sinica,2012,28(8):2479-2492.

    • [23] 杨海军,李勇,唐雁刚,等.塔里木盆地克深气田成藏条件及勘探开发关键技术[J].石油学报,2021,42(3):399-414.YANG Haijun,LI Yong,TANG Yangang,et al.Accumulation conditions,key exploration and development technologies for Keshen gas field in Tarim Basin[J].Acta Petrolei Sinica,2021,42(3):399-414.

    • [24] 巩磊,高铭泽,曾联波,等.影响致密砂岩储层裂缝分布的主控因素分析:以库车前陆盆地侏罗系—新近系为例[J].天然气地球科学,2017,28(2):199-208.GONG Lei,GAO Mingze,ZENG Lianbo,et al.Controlling factors on fracture development in the tight sandstone reservoirs:a case study of Jurassic-Neogene in the Kuqa foreland basin[J].Natural Gas Geoscience,2017,28(2):199-208.

    • [25] 王珂,张荣虎,李宝刚,等.致密砂岩储层构造裂缝特征及地质建模:以塔里木盆地库车坳陷大北12气藏为例[J].海相油气地质,2023,28(1):72-82.WANG Ke,ZHANG Ronghu,LI Baogang,et al.Characteristics and geological modeling of structural fractures in tight sandstone reservoir:taking Dabei-12 gas reservoir in Kuqa Depression,Tarim Basin as an example[J].Marine Origin Petroleum Geology,2023,28(1):72-82.

    • [26] 王珂,杨海军,张惠良,等.超深层致密砂岩储层构造裂缝特征与有效性:以塔里木盆地库车坳陷克深8气藏为例[J].石油与天然气地质,2018,39(4):719-729.WANG Ke,YANG Haijun,ZHANG Huiliang,et al.Characteristics and effectiveness of structural fractures in ultra-deep tight sandstone reservoir:a case study of Keshen-8 gas pool in Kuqa Depression,Tarim Basin[J].Oil & Gas Geology,2018,39(4):719-729.

    • [27] 袁静,曹宇,李际,等.库车坳陷迪那气田古近系裂缝发育的多样性与差异性[J].石油与天然气地质,2017,38(5):840-850.YUAN Jing,CAO Yu,LI Ji,et al.Diversities and disparities of fracture systems in the Paleogene in DN gas field,Kuqa Depression,Tarim Basin[J].Oil & Gas Geology,2017,38(5):840-850.

    • [28] 郭超,张志勇,吴林,等.中新生代天山剥蚀与塔里木盆地北缘沉积耦合过程:新疆库车河剖面的低温热年代学证据[J].地球科学,2022,47(9):3417-3430.GUO Chao,ZHANG Zhiyong,WU Lin,et al.Mesozoic-Cenozoic coupling process of Tianshan denudation and sedimentation in the northern margin of the Tarim Basin:evidence from low-temperature thermochronology(Kuqa river section,Xinjiang)[J].Earth Science,2022,47(9):3417-3430.

    • [29] 何登发,袁航,李涤,等.吐格尔明背斜核部花岗岩的年代学、地球化学与构造环境及其对塔里木地块北缘古生代伸展聚敛旋回的揭示[J].岩石学报,2011,27(1):133-146.HE Dengfa,YUAN Hang,LI Di,et al.Chronology,geochemistry and tectonic setting of granites at the core of Tugerming anticline,Tarim Basin:indications of Paleozoic extensional and compressional cycle at the northern margin of Tarim continental block[J].Acta Petrologica Sinica,2011,27(1):133-146.

    • [30] 史文中,田岩,黄应,等.基于张量投票的激光扫描数据修复方法[J].系统工程与电子技术,2009,31(11):2723-2727.SHI Wenzhong,TIAN Yan,HUANG Ying,et al.Laser scanning data inpainting method based on tensor voting technique[J].Systems Engineering and Electronics,2009,31(11):2723-2727.

    • [31] 刘春,张荣虎,张惠良,等.库车前陆冲断带多尺度裂缝成因及其储集意义[J].石油勘探与开发,2017,44(3):463-472.LIU Chun,ZHANG Ronghu,ZHANG Huiliang,et al.Genesis and reservoir significance of multi-scale natural fractures in Kuqa foreland thrust belt,Tarim Basin,NW China[J].Petroleum Exploration and Development,2017,44(3):463-472.

    • [32] 张惠良,张荣虎,杨海军,等.超深层裂缝-孔隙型致密砂岩储集层表征与评价:以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J].石油勘探与开发,2014,41(2):158-167.ZHANG Huiliang,ZHANG Ronghu,YANG Haijun,et al.Characterization and evaluation of ultra-deep fracture-pore tight sandstone reservoirs:a case study of Cretaceous Bashijiqike Formation in Kelasu tectonic zone in Kuqa foreland basin,Tarim,NW China[J].Petroleum Exploration and Development,2014,41(2):158-167.

    • [33] 王振宇,刘超,张云峰,等.库车坳陷K区块冲断带深层白垩系致密砂岩裂缝发育规律、控制因素与属性建模研究[J].岩石学报,2016,32(3):865-876.WANG Zhenyu,LIU Chao,ZHANG Yunfeng,et al.A study of fracture development,controlling factor and property modeling of deep-lying tight sandstone in Cretaceous thrust belt K region of Kuqa Depression[J].Acta Petrologica Sinica,2016,32(3):865-876.

    • [34] 张荣虎,王珂,王俊鹏,等.塔里木盆地库车坳陷克深构造带克深8区块裂缝性低孔砂岩储层地质模型[J].天然气地球科学,2018,29(9):1264-1273.ZHANG Ronghu,WANG Ke,WANG Junpeng,et al.Reservoir geological model of fracture low porosity sandstone of Keshen 8 wellblock in Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2018,29(9):1264-1273.

    • [35] FENG Jianwei,REN Qiqiang,XU Ke.Using geomechanical method to predict tectonic fractures in low-permeability sandstone reservoirs [J].Advances in Earth Science,2016,31(9):946-967.

    • [36] 杨海军,张荣虎,杨宪彰,等.超深层致密砂岩构造裂缝特征及其对储层的改造作用:以塔里木盆地库车坳陷克深气田白垩系为例[J].天然气地球科学,2018,29(7):942-950.YANG Haijun,ZHANG Ronghu,YANG Xianzhang,et al.Characteristics and reservoir improvement effect of structural fracture in ultra-deep tight sandstone reservoir:a case study of Keshen Gasfield,Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2018,29(7):942-950.

    • [37] 王珂,张荣虎,方晓刚,等.超深层裂缝—孔隙型致密砂岩储层特征与属性建模:以库车坳陷克深8气藏为例[J].中国石油勘探,2018,23(6):87-96.WANG Ke,ZHANG Ronghu,FANG Xiaogang,et al.Characteristics and property modeling of ultra-deep fractured-porous tight sandstone reservoir:a case study on the Keshen 8 gas reservoir in Kuqa Depression[J].China Petroleum Exploration,2018,23(6):87-96.

    • [38] 史超群,王佐涛,朱文慧,等.塔里木盆地库车坳陷克拉苏构造带大北地区超深储层裂缝特征及其对储层控制作用[J].天然气地球科学,2020,31(12):1687-1699.SHI Chaoqun,WANG Zuotao,ZHU Wenhui,et al.Fracture characteristic and its impact on reservoir quality of ultra-deep reservoir in Dabei region,Kelasu tectonic belt,Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2020,31(12):1687-1699.