en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李峰峰(1990-),男,高级工程师,博士,研究方向为碳酸盐岩储层与沉积等。E-mail: lff1522188426@petrochina.com.cn。

通信作者:

李峰峰(1990-),男,高级工程师,博士,研究方向为碳酸盐岩储层与沉积等。E-mail: lff1522188426@petrochina.com.cn。

中图分类号:TE 122

文献标识码:A

文章编号:1673-5005(2025)05-0001-15

DOI:10.3969/j.issn.1673-5005.2025.05.001

参考文献 1
王宜林,宋新民,王贵海,等.中东地区油气合作区快速规模上产关键技术与实践[J].石油学报,2020,41(12):1633-1642.WANG Yilin,SONG Xinmin,WANG Guihai,et al.Key technologies and practices for rapid and large-scale production increase in cooperation oil and gas fields of the Middle East[J].Acta Petrolei Sinica,2020,41(12):1633-1642.
参考文献 2
周长迁,张庆春,杨沛广,等.美索不达米亚盆地成藏主控因素分析[J].石油实验地质,2013,35(3):296-301.ZHOU Changqian,ZHANG Qingchun,YANG Peiguang,et al.Main controlling factors of hydrocarbon accumulation in Mesopotamia Basin[J].Petroleum Geology & Experiment,2013,35(3):296-301.
参考文献 3
SADOONI F N,AQRAWI A A M.Cretaceous sequence stratigraphy and petroleum potential of the Mesopotamian Basin,Iraq[J].Society for Sedimentary Geology,2000,69:315-334.
参考文献 4
AQRAWI A A M,THEHNI G A,SHERWANI G H,et al.Mid-cretaceous rudist-bearing carbonates of the Mishrif Formation:an important reservoir sequence in the Mesopotamian Basin,Iraq[J].Journal of Petroleum Geology,1998,21(1):57-82.
参考文献 5
BROMHEAD A D,VAN BUCHEM F S P,SIMMONS M D,et al.Sequence stratigraphy,palaeogeography and petroleum plays of the cenomanian-turonian succession of the Arabian plate:an updated synthesis[J].Journal of Petroleum Geology,2022,45(2):119-161.
参考文献 6
MAHDI T A,AQRAWI A A M,HORBURY A D,et al.Sedimentological characterization of the mid-Cretaceous Mishrif reservoir in southern Mesopotamian Basin,Iraq[J].GeoArabia,2013,18(1):139-174.
参考文献 7
刘航宇,田中元,刘波,等.中东地区巨厚强非均质碳酸盐岩储层分类与预测:以伊拉克W油田中白垩统Mishrif组为例[J].石油学报,2019,40(6):677-691.LIU Hangyu,TIAN Zhongyuan,LIU Bo,et al.Classification and prediction of giant thick strongly heterogeneous carbonate reservoirs in the Middle East area:a case study of Mid-Cretaceous Mishrif Formation in the W oilfield of Iraq[J].Acta Petrolei Sinica,2019,40(6):677-691.
参考文献 8
李峰峰,郭睿,宋世琦.层序格架约束下沉积、成岩作用对岩石物性的控制:以中东A油田白垩系Mishrif组为例[J].高校地质学报,2021,27(4):432-443.LI Fengfeng,GUO Rui,SONG Shiqi.Impacts of the sedimentation and diagenesis on reservior physical property under the control of sequence:a case study of the Cretaceous Mishrif Formation,A oilfield in the middle east[J].Geological Journal of China Universities,2021,27(4):432-443.
参考文献 9
MAHDI T A,AQRAWI A A M.Sequence stratigraphic analysis of the mid-cretaceous Mishrif Formation,southern Mesopotamian Basin,Iraq[J].Journal of Petroleum Geology,2014,37(3):287-312.
参考文献 10
李峰峰,李蕾,万继方,等.伊拉克X油田碳酸盐岩隔夹层隐蔽性特征及封隔性评价[J].中国石油大学学报(自然科学版),2024,48(4):1-11.LI Fengfeng,LI Lei,WAN Jifang,et al.Hidden characteristics and sealed property evaluation of carbonate baffles and barrier in X Oilfield,Iraq[J].Journal of China University of Petroleum(Edition of Natural Science),2024,48(4):1-11.
参考文献 11
李峰峰,宋新民,郭睿,等.厚层生物碎屑灰岩油藏隔夹层特征及成因:以中东地区M油田白垩系Mishrif组为例[J].石油学报,2021,42(7):853-864.LI Fengfeng,SONG Xinmin,GUO Rui,et al.Characteristics and genesis of interlayers in thick bioclastic limestone reservoirs:a case study of Cretaceous Mishrif Formation of the M oilfield in the Middle East[J].Acta Petrolei Sinica,2021,42(7):853-864.
参考文献 12
LIU H,SHI K,LIU B,et al.The characteristics and origins of thief zones in the Cretaceous limestone reservoirs of Central and southern Mesopotamian Basin[J].Journal of Petroleum Science and Engineering,2021,201:1-17.
参考文献 13
余义常,宋新民,林敏捷,等.伊拉克H油田Mishrif组下段隔夹层特征及开发策略[J].中国石油大学学报(自然科学版),2023,47(2):1-12.YU Yichang,SONG Xinmin,LIN Minjie,et al.Characteristics and development strategies of interlayers in the lower member of Mishrif Formation in H Oilfield,Iraq[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(2):1-12.
参考文献 14
韩海英,田中元,徐振永,等.伊拉克W油田白垩系生物碎屑灰岩储层高渗层成因及分布规律[J].海相油气地质,2022,27(3):261-270.HAN Haiying,TIAN Zhongyuan,XU Zhenyong,et al.Genesis and distribution of high permeable streaks of the Cretaceous bioclastic limestone reservoir in W Oilfield,Iraq[J].Marine Origin Petroleum Geology,2022,27(3):261-270.
参考文献 15
HUSSAIN S A,AL-OBAIDI M,KHWEDIM K,et al.Facies architecture,diagenesis and paleoceanography of Mishrif(Late Cretaceous)in selected wells of west qurna oil field,southern Iraq[J].Journal of Physics:Conference Series,2020,1664(1):1-16.
参考文献 16
MAHDI T A,AQRAWI A A M.Role of facies diversity and cyclicity on the reservoir quality of the mid-Cretaceous Mishrif Formation in the southern Mesopotamian Basin,Iraq[J].Geological Society,London,Special Publications,2018,435(1):85-105.
参考文献 17
HOLLIS C.Diagenetic controls on reservoir properties of carbonate successions within the Albian-Turonian of the Arabian Plate[J].Petroleum Geoscience,2011,17(3):223-241.
参考文献 18
李峰峰,郭睿,宋世琦.中东M油田白垩系Mishrif组碳酸盐岩储层特征及主控因素[J].中国石油大学学报(自然科学版),2021,45(6):12-24.LI Fengfeng,GUO Rui,SONG Shiqi.Reservoir characteristics of carbonate rock of Mishrif Formation in Cretaceous,M Oilfield in the Middle East[J].Journal of China University of Petroleum(Edition of Natural Science),2021,45(6):12-24.
参考文献 19
衣丽萍,许家铖,韩海英,等.基于沉积相—岩石类型控制的生物碎屑灰岩油藏三维地质建模方法研究:以伊拉克H油田白垩系Mishrif组为例[J].中国石油勘探,2022,27(2):150-162.YI Liping,XU Jiacheng,HAN Haiying,et al.Research on 3D geological modeling method of bioclastic limestone oil reservoir controlled by sedimentary facies and rock type:a case study of the Cretaceous Mishrif Formation in H Oilfield,Iraq[J].China Petroleum Exploration,2022,27(2):150-162.
参考文献 20
WANG R,WANG Z,OSUMANU A,et al.Grid density overlapping hierarchical algorithm for clustering of carbonate reservoir rock types:a case from Mishrif Formation of West Qurna-1 oilfield,Iraq[J].Journal of Petroleum Science and Engineering,2019,182:1-19.
参考文献 21
宋新民,李勇.中东碳酸盐岩油藏注水开发思路与对策[J].石油勘探与开发,2018,45(4):679-689.SONG Xinmin,LI Yong.Optimum development options and strategies for water injection development of carbonate reservoirs in the Middle East[J].Petroleum Exploration and Development,2018,45(4):679-689.
参考文献 22
李勇,赵丽敏,王舒,等.碳酸盐岩油藏水平井井网周期性交替注水技术[J].石油勘探与开发,2021,48(5):986-994.LI Yong,ZHAO Limin,WANG Shu,et al.Using cyclic alternating water injection to enhance oil recovery for carbonate reservoirs developed by linear horizontal well pattern[J].Petroleum Exploration and Development,2021,48(5):986-994.
参考文献 23
赵丽敏,周文,钟原,等.伊拉克H油田Mishrif组储集层含油性差异主控因素分析[J].石油勘探与开发,2019,46(2):302-311.ZHAO Limin,ZHOU Wen,ZHONG Yuan,et al.Control factors of reservoir oil-bearing difference of Cretaceous Mishrif Formation in the H oilfield,Iraq[J].Petroleum Exploration and Development,2019,46(2):302-311.
参考文献 24
孙文举,乔占峰,邵冠铭,等.伊拉克哈法亚油田中白垩统Mishrif组MB1-2亚段沉积与储集层构型[J].石油勘探与开发,2020,47(4):713-722.SUN Wenju,QIAO Zhanfeng,SHAO Guanming,et al.Sedimentary and reservoir architectures of MB1-2 sub-member of Middle Cretaceous Mishrif Formation of Halfaya Oilfield in Iraq[J].Petroleum Exploration and Development,2020,47(4):713-722.
参考文献 25
李峰峰,郭睿,刘立峰,等.伊拉克M油田白垩系Mishrif组潟湖环境碳酸盐岩储集层成因机理[J].地球科学,2021,46(1):228-241.LI Fengfeng,GUO Rui,LIU Lifeng,et al.Genesis of reservoirs of lagoon in the Mishrif Formation,M oilfield,Iraq[J].Earth Science,2021,46(1):228-241.
参考文献 26
何登发,何金有,文竹,等.伊拉克油气地质与勘探潜力[M].北京:石油工业出版社,2013:167-173.
参考文献 27
MEHRABI H,RAHIMPOUR-BONAB H.Paleoclimate and tectonic controls on the depositional and diagenetic history of the Cenomanian-early Turonian carbonate reservoirs,Dezful Embayment,SW Iran[J].Facies,2014,60(1):147-167.
参考文献 28
SHERWANI G H M,AQRAWI A A M.Lithostratigraphy and environmental considerations of cenomanian-early turonian shelf carbonates(Rumaila and Mishrif Formations)of Mesopotamian Basin,middle and southern Iraq[J].AAPG Bulletin,1987,71:64.
参考文献 29
STANLEY G D.The evolution of modern corals and their early history[J].Earth-Science Reviews,2003,60(3/4):195-225.
参考文献 30
BURCHETTE T P.Mishrif Formation(cenomanian-turonian),southern Arabian Gulf:carbonate platform growth along a Cratonic Basin margin[J].Cretaceous Carbonate Platform,1993,56(1):185-199.
参考文献 31
TONI SIMO J A,SCOTT R W,MASSE J P.Cretaceous carbonate platforms:an overview[M]//Cretaceous carbonate platforms.Tulsa:American Association of Petroleum Geologists,1993:1-14.
参考文献 32
SADOONI F N.The nature and origin of Upper Cretaceous basin-margin rudist buildups of the Mesopotamian Basin,southern Iraq,with consideration of possible hydrocarbon stratigraphic entrapment[J].Cretaceous Research,2005,26(2):213-224.
参考文献 33
FLÜGEL E.Microfacies of carbonate rocks:analysis,interpretation and application[M].New York:Springer,2004:267-334.
参考文献 34
杨磊磊,魏国,于志超,等.四川盆地灯影组多类型流体多期次改造作用下孔隙度演化的定量研究[J].中国石油大学学报(自然科学版),2024,48(3):15-26.YANG Leilei,WEI Guo,YU Zhichao,et al.Quantitative study on porosity evolution under multi-stage reformation of multi-type fluids in Dengying Formation,Sichuan Basin[J].Journal of China University of Petroleum(Edition of Natural Science),2024,48(3):15-26.
参考文献 35
张世铭,袁剑英,张小军,等.柴西下干柴沟组咸化湖盆碳酸盐岩溶蚀模拟试验[J].中国石油大学学报(自然科学版),2023,47(1):1-11.ZHANG Shiming,YUAN Jianying,ZHANG Xiaojun,et al.Dissolution simulation experiment of carbonate rock in saline lacustrine basin of lower Ganchaigou Formation in western Qaidam Basin[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(1):1-11.
参考文献 36
国家能源局.油气储层评价方法:SY/T 6285—2011[S].北京:石油工业出版社,2011:2.
参考文献 37
PETER A S,DANA S U S.A color guide to the petrography of carbonate rocks:grains,textures,porosity,diagenesis[M].Oklahoma:The American Association of Petroleum Geologists,2003:328-339.
目录contents

    摘要

    伊拉克东南部白垩系Mishrif组为碳酸盐缓坡沉积,储集层成因多样复杂,开发矛盾突出。基于伊拉克东南部4个油田11口取芯井资料,明确碳酸盐缓坡沉积特征,综合孔隙成因、结构组分、物性、微观结构及开发特征等因素划分储集层类型,厘清碳酸盐缓坡沉积控储机制。结果表明:伊拉克东南部Mishrif组碳酸盐缓坡以波浪作用为主,潮汐作用弱;沉积相变平缓,结构组分分异弱;生物礁难保留,生屑滩发育;鲜见异化颗粒,富含生物介壳;重力流不发育,局限环境岩性多样;储层分为溶孔主导型、粒间孔主导型、孤立孔主导型和微孔主导型,溶孔主导型储层发育于点滩,受沉积作用、准同生期成岩作用和构造作用综合控制;粒间孔主导型储层发育于障壁滩和潮道,受沉积作用控制;孤立孔主导型储层发育于潟湖和滩前向盆地一侧,孔隙形成于准同生溶蚀作用;微孔主导型储层发育于潟湖、斜坡脚和深水陆棚等低能环境,成岩改造程度低;碳酸盐缓坡高能沉积支撑优质储层发育,优质储层微观非均质性强;深水环境和局限环境控制隔夹层发育;开阔深水环境发育大规模高孔低渗储层,储层平面非均质性弱;局限环境储层类型多样,快速相变导致储层叠置关系复杂。

    Abstract

    The Cretaceous Mishrif Formation in the southeastern Iraq was deposited in a carbonate ramp environment, characterized by diverse and complex reservoir origins and significant development contradictions. Based on data of 11 coring wells across four oilfields in the southeastern Iraq, the sedimentary characteristics of the carbonate ramp were clarified, reservoir types were classified by integrating pore genesis, composition, physical properties, microstructure, and production performance, and the controlling mechanisms of the carbonate ramp on reservoir development were identified. The results show that the carbonate ramp of the Mishrif Formation is mainly influenced by wave action with weak tidal activity. Facies variation is not pronounced, components are poorly differentiated, reefs are difficult to preserve, and bioclastic shoals are widely developed. Allochems are rare but bioclasts are abundant. Gravity flows are absent, and lithologies are diverse in restricted environments. Reservoirs are classified into four types: vug-dominated, intergranular pore-dominated, isolated pore-dominated, and microporous-dominated. Vug-dominated reservoirs develop in point shoals and are jointly controlled by sedimentation, penecontemporaneous diagenesis, and tectonics. Intergranular pore-dominated reservoirs occur in barrier shoals and tidal channels, mainly controlled by sedimentation. Isolated pore-dominated reservoir form in lagoons and front shoal-basin settings, controlled by diagenesis. Microporous-dominated reservoirs develop in low-energy settings such as lagoons, slope bottoms, and deep-water shelves, with limited diagenetic alteration. Overall, in carbonate ramps, high-energy sedimentation promotes the development of high-quality reservoirs with strong microstructure heterogeneity. Deep-water and restricted environments control the formation of baffles and barriers. A large number of high-porosity but low-permeability reservoirs occur in open and deep-water environments, showing weak lateral heterogeneity, while restricted environments host complex reservoir combinations, with strong spatial heterogeneity due to facies changes.

  • 伊拉克东南部位于美索不达米亚盆地构造前缘带,是世界上重要的油气产区[1]。美索不达米亚盆地95%以上的油气发现位于白垩系[2],仅在盆地中部和南部,白垩系油气资源量就占据伊拉克石油探明储量的80%[3]。中白垩系Mishrif组油气储量占整个白垩系地层的40%,占伊拉克总石油地质储量的30%[4]。国内外专家学者对Mishrif组开展大量研究,并取得众多突破性进展,涵盖区域地质、层序格架、沉积环境、成岩作用、储层表征、测井解释、岩石分类、地质建模及开发模式等领域。Mishrif组沉积于晚赛诺曼阶—早土伦阶,该时期阿拉伯板块北缘和东缘处于被动大陆边缘[5-6];Mishrif组沉积于碳酸盐缓坡环境,水体较浅,沉积速率较高,发育多期层序旋回,地层沉积厚度大[7-9];Mishrif组生物碎屑灰岩发育孔隙型储层,隔夹层和高渗层发育,微观结构复杂,储层非均质性强[10-14];储层主要受沉积—成岩作用控制,次生孔隙主要形成于准同生期大气淡水环境[15-18];储层物性变化大,储层岩石分类可有效约束储层属性建模[19-20];坚持分层系注水开发,部署立体化差异井网是提高巨厚油藏的有效开发策略[21-22]。Mishrif组研究已比较深入,但依旧存在问题:①中东地区与Mishrif组同时期沉积地层中,为何仅伊拉克南部发育如此大规模储层?伊拉克南部碳酸盐缓坡具有哪些特征?碳酸盐缓坡控储机制研究程度较低;②伊拉克东南部Mishrif组厚度近400 m,储层品质差异大,油气不但赋存于高能沉积,低能沉积中仍蕴含规模可观的储量[23-25],储层非均质性强,储量动用极不均衡,如何有效划分Mishrif组储层类型尚未形成共识。笔者基于上述两个问题,系统分析伊拉克南部Mishrif组碳酸盐缓坡沉积特征,明确沉积作用控储机制,划分储集层类型,明确不同储集层特征,以期为巨厚碳酸盐岩油藏高效注水开发提供指导。

  • 1 构造沉积背景

  • 白垩纪早期,新特提斯洋持续伸展裂陷,阿拉伯板块北缘和东缘形成南新特提斯洋,南新特提斯洋的开启导致侏罗纪的Gotina盆地蒸发岩沉积停止,自此转换为Balambo-Garau盆地[26],白垩系以厚层的碳酸盐沉积为主(图1(a))。中白垩纪,新特提斯洋裂陷达到最大,霍尔莫斯盐丘底辟、基底断层复活等对古地貌的塑造具有重要影响[27]。赛诺曼阶早期,构造沉降导致伊拉克中部形成Najaf次盆地,伊拉克东南部沉积受东部Balambo-Garau盆地和西北部Najaf盆地共同控制(图1(b))。Najaf盆地沉降初期,盐丘底辟作用较弱,构造起伏变化较小。随着Najaf盆地持续沉降,盐丘底辟作用加强,造成基底错位,在伊拉克东南部形成Amara古隆起,隆起向Balambo-Garau盆地发育断块边缘,在向Najaf盆地发育宽缓的低角度浅水缓坡[28](图1(c))。伊拉克东南部多个巨型碳酸盐岩油田均发育于Amara古隆起向Najaf盆地一侧。此次选取伊拉克南部4个巨型碳酸盐岩油田(H、M、R和W油田)(图1(d)),其主力油藏均为Mishrif组巨厚生物碎屑灰岩,优选11口典型取芯井,结合区域地质认识,综合岩心、铸体薄片、物性、压汞、扫描电镜及CT等资料,通过数理统计和地质分析,研究伊拉克东南部Mishrif组碳酸盐缓坡沉积特征和储层类型。

  • 图1 伊拉克东南部Mishrif组构造沉积背景和研究区概况

  • Fig.1 Tectonic and sedimentary setting of Mishrif Formation in the southeastern Iraq and overview of study area

  • 2 缓坡沉积特征

  • 根据正常浪基面和风暴浪基面将伊拉克东南部Mishrif组碳酸盐缓坡分为内缓坡、中缓坡和外缓坡,自陆向盆地发育潮上坪、潟湖、点滩、潮道、障壁滩、滩前、斜坡脚和深水陆棚(图2)。潮上坪、潟湖和点滩位于内缓坡向陆一侧,水体环境局限,点滩高于正常浪基面,沉积能量较高。潮道切割潟湖,水动力条件较强。障壁滩临近正常浪基面,位于内缓坡向海一侧,水体开阔能量较高。滩前位于中缓坡,水体开阔,处于正常浪基面和风暴浪基面之间,向海过渡为斜坡脚。斜坡脚水体深度大,沉积能量低。深水陆棚处于外缓坡,低于风暴浪基面,水动力条件低。

  • (1)波浪作用为主,潮汐作用弱。碳酸盐缓坡沉积水动力主要受波浪作用影响,根据浪基面及水体环境等划分沉积相带。波浪传播距离远,水体势能高,对沉积物的击打、冲刷、颠选和扰动等作用较强。伊拉克南部在Mishrif组时期整体处于浅水背景,波浪作用尤为强烈,水体中营养物质充足,碳酸盐沉积速率高,宽缓的低角度缓坡碳酸盐连续沉积,未固结或弱固结的沉积物遭受波浪冲刷,灰泥含量整体偏低,造成伊拉克南部Mishrif组发育大规模优质储层。潮汐作用主要影响近陆沉积相带,包括潟湖、潮道和潮上坪(图2)。潟湖主体受波浪作用控制,沉积作用较连续,沉积厚度较大,最厚可达60 m,生物碎屑种类较多,可见大粒径的底栖有孔虫、棘皮类、介型虫和双壳类等碎片。潟湖近陆方向受潮汐作用影响,以粒泥灰岩为主,富含腹足类和藻类等碎屑,沉积速率低且间断,通常与潮道相伴生。潮道呈条带状分布于潟湖,在Mishrif组上部局部发育,沉积厚度占比较低,潮道迁移造成主干道不易识别,局部厚层沉积是多期潮道叠加形成。潮道沉积物来源于波浪对未固结或弱固结的沉积物的冲刷,并将其向陆运移至潮汐作用带,导致潮道结构组分与障壁滩相似。潮道以颗粒灰岩为主,颗粒以双壳类、棘皮类、底栖有孔虫、似球粒为主,粒径通常小于500 μm,结构成熟度较高,岩心上可见交错层理,颗粒感较强。Mishrif组沉积时期气候湿润,不具备干旱的蒸发条件[27],潮上坪中缺乏石膏、准同生白云石化等蒸发指示标志,可见鸟眼构造和示顶底粉砂等构造,潮上坪发育规模介于2~5 m。潟湖、潮道和潮上坪构成向上水体变浅的相序,仅发育于三级层序高位体系域晚期。

  • (2)沉积相变平缓,结构组分分异弱。 Amara古隆起向Najaf次盆方向为坡度较小,水动力条件分异弱,不同相带过渡区间大,呈指状交叉接触,生物碎屑分异不明显。如底栖有孔虫在斜坡脚、潟湖、潮道和点滩中均可发育,海绵骨针、介形虫等深水生物碎屑在局限浅水环境中也可见,藻类既存在于障壁滩向海一侧的滩前,又发育于向陆一侧的潟湖。生屑对沉积环境指示意义弱,岩石中通常以一种生屑为主、多种生屑为辅,或多种生屑等比例组成。根据生屑类型、结构组分和构造特征等在Mishrif组中识别出28种岩相(图2)。同一层序旋回内,平缓的相变和相似的生屑组分造成伊拉克东南部Mishrif组储层呈厚层块状。尽管沉积期Mishrif结构组分分异弱,但各岩性原始物性不同,不同生屑发生差异成岩作用,导致储层物性差异增大,微观结构复杂化,最终导致巨厚生物碎屑灰岩具有极强的非均质性。

  • 图2 碳酸盐缓坡沉积模式及沉积特征

  • Fig.2 Carbonate ramp model and sedimentary characteristics

  • (3)生物礁难保留,生屑滩发育。礁滩是生物礁和浅滩的合称,白垩纪时期,厚壳蛤是最主要的造礁生物,其形成的礁占白垩纪中期生物礁总量的60%以上[29]。赛诺曼阶Najaf内陆次盆地边缘宽缓的低角度浅水环境和Amara构造古隆起为厚壳蛤等造岩生物的发育提供有利场所[30]。伊拉克东南部在该时期发育大规模富含厚壳蛤地层。与全新世生物礁相比,白垩纪厚壳蛤内部固结较弱,难以在台地边缘形成陡峭的镶边生物礁,即便未发生暴露,随着可容纳空间的变化,当厚壳蛤礁生长至浪基面,波浪冲刷也会造成生物礁脱落[31-32],故白垩纪时期,在伊拉克东南部少见生物礁,以大规模的生屑滩为主,岩心和铸体薄片中可见厘米级厚壳蛤碎片(图3),由于水体冲刷强度和搬运距离差异,厚壳蛤富集程度和破碎程度变化较大。

  • (4)鲜见异化颗粒,富含生物介壳。赛诺曼阶—早土伦阶,伊拉克东南部碳酸盐缓坡的颗粒组分主要为生物介壳碎屑,包括厚壳蛤、双壳类、棘皮类、有孔虫类、藻类、腹足类、苔藓类和海绵类等(图4(a)~(n)),其中底栖有孔虫的种类最为丰富,包含双列有孔虫、缘孔虫属、蜂巢虫属、马刀虫属、圆锥虫属和栗孔虫属等(图4(d)~(i)),底栖有孔虫壳壁泥晶化作用强烈,壳体轮廓保存较好,体腔溶蚀形成孔隙。整个层段中少见鲕粒、内碎屑及豆粒等集合颗粒,局部可见似球粒(图4(o))。丰富的集合颗粒是镶边碳酸盐岩台地的特征,但在缓坡环境中却不发育[33]。高镁方解石和文石质的生屑抗溶蚀能力弱,为发育次生孔隙奠定物质基础。

  • 图3 M油田M046井Mishrif组厚壳蛤碎屑破碎特征

  • Fig.3 Rudist debris characteristics of Mishrif formation in M046 well in M oilfield

  • (5)中外缓坡未见重力流,局限环境岩性多样。碳酸盐缓坡中,从浅水环境到深水环境为平缓过渡,且厚壳蛤内部胶结弱,难以发育陡峭的镶边生物礁。中外缓坡沉积物来源于生物礁散落的生屑,生屑粒径通常较小,水体搬运距离较远,岩石结构成熟度较高。岩心上可见平行层理,未见重力滑塌重力流沉积,反映正常的水动力。障壁滩向陆一侧发育潟湖,潟湖虽然高于浪基面,但水动力条件较弱,广盐性生物和窄盐性生物均比较发育,生物扰动现象普遍。潟湖水浅,对海平面升降的响应敏感,海平面下降容易造成地层暴露,发生选择性溶蚀,造成潟湖沉积亦可发育大规模的储层,复杂的结构组分和成岩改造导致潟湖岩性变化频率高,伊拉克南部Mishrif组潟湖中可识别出12种岩相。

  • 图4 伊拉克东南部Mishrif组碳酸盐缓坡生物碎屑

  • Fig.4 Bioclasts of carbonate ramp of Mishrif formation in the southeastern Iraq

  • 3 储集层类型

  • 伊拉克东南部Mishrif组孔隙型碳酸盐岩储层发育粒间孔、粒间溶孔、铸模孔、生物体腔孔、溶孔、微孔、格架孔、粒内孔,局部还可见晶间孔。储层中通常是以一种孔隙为主,多种孔隙为辅。综合孔隙成因、结构组分、物性、微观特征及开发响应等将伊拉克东南部Mishrif组储层分为溶孔主导型、粒间孔主导型、孤立孔主导型和微孔主导型。不同类型储层地质特征总结如表1所示。

  • 3.1 溶孔主导型储层

  • 溶孔主导型储层以溶孔为主,粒间孔、格架孔和微孔为辅。岩心上可见大量溶蚀孔洞,孔洞体积差异较大,最大可达厘米级(图5(a)、(b)),储层面孔率可达30%,溶孔半径多大于200 μm(图5(c)~(e))。该类储层主要发育于点滩,受沉积作用、准同生期成岩作用和构造作用综合控制。点滩沉积水动力较强,以颗粒灰岩和含泥颗粒灰岩为主,少量为泥晶生屑灰岩,颗粒包括苔藓类、底栖有孔虫及大量细粒生屑。海水环境下生屑发生强烈泥晶化作用,原壳体结构被破坏。大气淡水环境下发生强烈溶蚀,形成大量次生孔隙。浅埋藏条件下,构造拉伸形成多条正断层,断层切割滩体,打破封闭的成岩环境,大气淡水沿着断层向下运移,滩体再次发生溶蚀,形成大量溶孔[34-35]。Mishrif组埋深介于2 000~2 500 m,未被溶蚀的生物介壳硬度较大,抗压实能力较强。因此随着埋深的增加,压实作用对孔隙的破坏较小。而且Mishirif组上覆Khasib组泥质灰岩作为良好的盖层,形成的异常高压也有利于孔隙的保存。溶孔主导型储层喉道直径跨度较大,分选较差,大喉(喉道直径大于等于1 μm)发育比例高[36](图5(f)~(h))。储层物性通常呈高孔高渗、超高渗,少量为中渗[36],与围岩渗透率级差较大。溶孔主导型储层发育通常受区域构造运动影响,临近高级层序界面。W油田Mishrif组顶部为区域不整合面,其上部MA段发育溶孔主导型储层,储层展布与点滩和断层匹配较高。衰竭式开采中,溶孔主导型储层是重要的产层段,但注水开发易发生水窜,微观驱替不均匀。

  • 表1 伊拉克东南部Mishrif组储集层类型及特征

  • Table1 Reservoir types and characteristics of Mishrif formation in the southeastern Iraq

  • 图5 W油田溶孔主导型储层特征

  • Fig.5 Characteristics of vug dominated reservoirs of W oilfield

  • 3.2 粒间孔主导型储层

  • 粒间孔主导型储层以粒间孔为主,粒间溶孔、生物体腔孔和粒内孔为辅,是伊拉克东南部Mishrif组最重要的储层。岩心颗粒感强,颗粒分选好,局部发育交错层理或平行层理,孔隙分选较好,横切面CT扫描中,孔隙呈黑色麻点状,分布均匀,可见浅白色大粒径生物碎屑(图6)。粒间孔主导型储层发育于障壁滩和潮道等高能环境,灰泥含量低,原生粒间孔发育,原始物性高,大气淡水环境下生屑壳体边缘或体腔发生溶蚀,形成粒间溶孔、体腔孔和粒内孔,孔隙体积增大,连通性变好。

  • 储层以砾屑灰岩和颗粒灰岩为主,局部为含泥颗粒灰岩。潮道颗粒包括双壳类、底栖有孔虫和棘皮类等(图7(a)),障壁滩主要为厚壳蛤碎屑,含少量底栖有孔虫,面孔率多大于20%(图7(b)、(c))。储层物性呈中高孔高渗、超高渗,少量为中渗[36],与围岩的渗透率级差较大。储层喉道粒径跨度较大,大喉(大于等于1 μm)发育比例高(图7(d)~(f))。尽管孔喉分布跨度大,储层渗透率由较大喉道控制,大于10 μm的喉道贡献80%的渗透率,其他喉道对渗透率贡献小或无贡献(图7(g)~(i))。油藏开发早期,粒间孔主导型储层可快速助力于规模建产,由于其厚度占比小且与围岩渗透率级差较大,注水开发中,粒间孔主导型储层通常作为“贼层”,注入水沿其快速突进,围岩中的油气不能被有效驱替,造成储量动用不均衡。粒间孔主导型储层主要分布于层序旋回高位体系域,空间展布比较稳定,多期叠置厚度可达20 m。伊拉克东南部Mishrif组,如H油田MB2段和MC段、W油田MB2段顶部,M油田MB2.1段顶部和R油田MB3段顶部,均发育大规模的粒间孔主导型储层。

  • 图6 W油田W114井粒间孔主导型储层岩心CT特征

  • Fig.6 CT characteristics of intergranular pore-dominated reservoir in W114 well in W oilfield

  • 3.3 孤立孔主导型储层

  • 孤立孔主导型储层以铸模孔和生物体腔孔为主,微孔为辅。岩心通常呈弱致密状,薄片中铸模孔和生物体腔孔肉眼可见,而微孔肉眼不可见,造成铸模孔和生物体腔孔呈孤立状的假象(图8(a)~(d))。储层主要发育于潟湖和滩前向盆地一侧,潟湖和滩前低于正常浪基面,沉积水动力弱,灰泥含量高,原始物性较差。灰泥多为低镁方解石,而生屑多为高镁方解石或文石,灰泥比生屑化学性质稳定[37],准同生期海平面下降,生屑被选择性溶蚀,形成铸模孔或生物体腔孔,孔隙体积大幅增加,但孔隙连通性未得到改善,故储层通常呈中高孔中低渗(图8(e))。储层以泥粒灰岩和粒泥灰岩为主,少量为含粒泥灰岩,颗粒以底栖有孔虫和藻类为主,含少量棘皮或双壳类,其中藻类被完全溶蚀形成铸模孔,而底栖有孔虫发生泥晶化壳体得以保存,形成体腔孔。储层喉道分布呈宽峰单模态,喉道半径主体介于0.1~1 μm,排驱压力主要介于0.07~0.7 MPa(图8(f)、(g))。孤立孔主导型储层与溶蚀作用息息相关,主要分布在层序旋回高位体系域晚期。在伊拉克东南部Mishrif组中,如H油田MB1段、W油田MB2段下部和MC段,M油田MB1段和MB2.2段,R油田MB2段,均发育大规模的粒间孔主导型储层,蕴含储量巨大,是油藏开发上产和长期稳产的重要支撑资源。

  • 图7 W油田粒间孔主导型储层微观结构

  • Fig.7 Microscopic texture of intergranular pore-dominated reservoir of W oilfield

  • 图8 孤立孔主导型储层特征

  • Fig.8 Characteristics of unconnected pore-dominated reservoir

  • 3.4 微孔主导型储集层

  • 微孔主导型储层以微孔为主,铸模孔为辅。岩心呈弱致密状,颗粒感较弱,铸体薄片染色后可观察到不同程度的“雾霾绿”(图9(a)~(c))。扫描电镜下,微孔通常小于5 μm,数量大且分布均匀(图9(d)~(h))。喉道通常小于1 μm,主体介于0.1~1 μm(图9(i))。储层主要发育于潟湖、斜坡脚和深水陆棚等低能环境,以含颗粒泥灰岩和生屑泥晶灰岩为主,颗粒主要为栗孔虫、海绵骨针,偶见双壳类。溶蚀作用对泥晶影响较小,而胶结作用形成的胶结物极易阻塞喉道,导致其丧失渗流能力,储层物性呈中低孔中低渗[34]。微孔主导型储层单井产能低,受高渗储层的影响,其蕴含的储量难以动用。微孔主导型储层主要发育与海侵体系域和高位体系域早期,空间展布稳定。在伊拉克东南部Mishrif组中,W油田MB2底部和MB1段,H油田MB1段和MC下部等均发育微孔主导型储层。

  • 图9 微孔主导型储层特征

  • Fig.9 Characteristics of micropores-dominated reservoirs

  • 4 碳酸盐缓坡控储方式

  • 4.1 高能沉积支撑优质储层发育

  • 高能沉积环境不但控制优质储层发育的物质基础,还控制成岩作用类型和改造趋势。缓坡沉积中,障壁滩、点滩和潮道沉积能量高,沉积物不但原始物性好,而且古地貌高,更易暴露于大气淡水环境,生屑遭受淋滤溶蚀。强烈的成岩改造导致孔隙系统复杂,孔喉半径差异增大,加剧微观非均质性。溶孔主导型储层和粒间孔主导型储层均发育于高能沉积环境,如障壁滩中的厚壳蛤生屑灰岩,生屑受水体冲刷后洁净,原生粒间孔发育(图10(a))。海水成岩环境中,厚壳蛤边缘发生泥晶化,形成泥晶套(图10(b))。同时海水胶结作用形成针状方解石,均匀地分布在壳体边缘(图10(c))。当海平面下降,岩石处于大气淡水环境下,文石质的针状方解石被溶蚀,泥晶套受大气淡水强烈冲刷导致解体(图10(d))。泥晶套被完全破坏后,厚壳蛤边缘遭受不同程度溶蚀,孔隙体积和连通性均大幅提高(图10(e))。随着溶蚀作用的持续,流体逐渐饱和发生环边胶结,形成等轴粒状的低镁方解石(图10(f)),均匀地分布于壳体边缘,方解石在埋藏过程中可抑制压实作用对孔隙的破坏,最终形成铸体薄片中岩石结构(图10(g)、(h))。

  • 图10 粒间孔主导型储层发育模式

  • Fig.10 Development model of intergranular pore-dominated reservoir

  • 4.2 深水环境和局限环境控制隔夹层发育

  • 深水陆棚和斜坡脚水动力条件较低,颗粒以浮游生屑为主,水深导致准同生期不易暴露溶蚀,由于缺乏硬质生屑支撑,埋藏压实导致岩石致密。深水陆棚沉积缓慢且连续,可形成稳定的隔层。如W油田Mishrif组MB2段底部和MC段底部2套稳定隔层便发育在深水陆棚(图11)。潟湖和潮上坪位于层序界面下部,胶结作用导致岩石致密,形成稳定隔层,如W油田CRII段和CRI段隔层分别形成于潮上坪和潟湖(图11)。潟湖水浅且能量弱,岩性复杂多样,且对海平面变化敏感,与胶结作用耦合形成岩性夹层。如W油田MB1段夹层厚度变化大,空间展布不稳定,侧向快速尖灭。

  • 图11 W油田Mishrif组隔夹层剖面

  • Fig.11 Baffles and interlayers of Mishrif Formation in W oilfield

  • 4.3 开阔环境发育高孔低渗储层

  • 碳酸盐缓坡,深水陆棚、斜坡脚、滩前斜坡和障壁滩等开阔水体环境,营养物质供给充足,沉积速率高且稳定,沉积厚度较大。相分异弱导致垂向上储层物性呈渐变。伊拉克W油田Mishrif组MC段和MB2段分别对应两期三级层序,MC段相序为深水陆棚—斜坡脚—滩前,物性为低孔低渗—高孔低渗—高孔中渗,MB2段相序为斜坡脚—滩前—障壁滩,物性为高孔低渗—高孔中渗—高孔高渗—超高渗[34](图12)。自滩前向深水陆棚方向,水体深度增加,对海平面升降的敏感度降低,水体环境相对稳定,沉积物相对均质,储层非均质性较低,横向可对比性强。

  • 4.4 局限环境发育强非均质储层

  • 局限环境中发育潟湖、潮道、点滩和潮坪,储层类型较多,物性差异大,空间组合关系复杂,储层与非储层相叠置。潟湖地层厚度大,平面展布范围广;点滩分布于潟湖中,单套点滩呈斑块状,多个点滩相连呈片状;潮道呈条带状分布于潟湖;潮坪分布于潟湖边缘。层序旋回快速驱动下,造岩生物适应环境的滞后导致沉积速率低,地层沉积厚度薄,沉积环境和成岩作用耦合导致岩石物理性质快速变化。W油田MA段从开阔环境快速演变为高能环境,最终演化为局限环境,沉积相序为滩前—障壁滩—潟湖—点滩,快速沉积演化导致沉积厚度薄,横向展布不稳定,物性变化频率高,储层与隔夹层、有利储层和差储层复杂叠置,空间非均质性强(图12)。

  • 图12 W油田Mishrif组不同物性储层展布

  • Fig.12 Distribution of reservoirs with different physical property of Mishrif formation in W oilfield

  • 5 结论

  • (1)伊拉克东南部Mishrif组碳酸盐缓坡受波浪作用控制,潮汐作用影响弱,浅水背景下沉积速率高,沉积相变平缓,结构组分分异弱,水体冲刷强烈,灰泥含量低,生物礁难保留,发育大规模的生屑滩,鲜见异化颗粒,以多样的生物介壳为主,壳体溶蚀形成大量次生孔隙,多因素综合导致伊拉克东南部Mishrif组发育巨厚生物碎屑灰岩储层,孔隙类型多样,储集性好,渗透率变化较大。

  • (2)根据孔隙类型,伊拉克东南部Mishrif组储层分为溶孔主导型、粒间孔主导型、孤立孔主导型和微孔主导型。溶孔主导型储层品质好,是开发中重要的目标层段。粒间孔主导型储层是Mishrif组重要油气产层。孤立孔主导型储层以铸模孔和生物体腔孔为主,资源潜力巨大,是开发上产和长期稳产的重要支撑资源。微孔主导型储层物性较差,衰竭式开发中储量难以动用。

  • (3)溶孔主导型储层和粒间孔主导型储层物性较好,压力传导距离远,单井产量高,宜采用大井距开发,注水开发中容易形成优势渗流通道,注水井要规避该两类储层。孤立孔主导型储层储量巨大,单井产量低,注水开发中宜部署小井距,采用点弱面强的温和注水,均匀驱替孔隙中的油气。微孔主导型储层渗透率较低,受围岩渗透率级差影响,开发中通常作为隔夹层。

  • 参考文献

    • [1] 王宜林,宋新民,王贵海,等.中东地区油气合作区快速规模上产关键技术与实践[J].石油学报,2020,41(12):1633-1642.WANG Yilin,SONG Xinmin,WANG Guihai,et al.Key technologies and practices for rapid and large-scale production increase in cooperation oil and gas fields of the Middle East[J].Acta Petrolei Sinica,2020,41(12):1633-1642.

    • [2] 周长迁,张庆春,杨沛广,等.美索不达米亚盆地成藏主控因素分析[J].石油实验地质,2013,35(3):296-301.ZHOU Changqian,ZHANG Qingchun,YANG Peiguang,et al.Main controlling factors of hydrocarbon accumulation in Mesopotamia Basin[J].Petroleum Geology & Experiment,2013,35(3):296-301.

    • [3] SADOONI F N,AQRAWI A A M.Cretaceous sequence stratigraphy and petroleum potential of the Mesopotamian Basin,Iraq[J].Society for Sedimentary Geology,2000,69:315-334.

    • [4] AQRAWI A A M,THEHNI G A,SHERWANI G H,et al.Mid-cretaceous rudist-bearing carbonates of the Mishrif Formation:an important reservoir sequence in the Mesopotamian Basin,Iraq[J].Journal of Petroleum Geology,1998,21(1):57-82.

    • [5] BROMHEAD A D,VAN BUCHEM F S P,SIMMONS M D,et al.Sequence stratigraphy,palaeogeography and petroleum plays of the cenomanian-turonian succession of the Arabian plate:an updated synthesis[J].Journal of Petroleum Geology,2022,45(2):119-161.

    • [6] MAHDI T A,AQRAWI A A M,HORBURY A D,et al.Sedimentological characterization of the mid-Cretaceous Mishrif reservoir in southern Mesopotamian Basin,Iraq[J].GeoArabia,2013,18(1):139-174.

    • [7] 刘航宇,田中元,刘波,等.中东地区巨厚强非均质碳酸盐岩储层分类与预测:以伊拉克W油田中白垩统Mishrif组为例[J].石油学报,2019,40(6):677-691.LIU Hangyu,TIAN Zhongyuan,LIU Bo,et al.Classification and prediction of giant thick strongly heterogeneous carbonate reservoirs in the Middle East area:a case study of Mid-Cretaceous Mishrif Formation in the W oilfield of Iraq[J].Acta Petrolei Sinica,2019,40(6):677-691.

    • [8] 李峰峰,郭睿,宋世琦.层序格架约束下沉积、成岩作用对岩石物性的控制:以中东A油田白垩系Mishrif组为例[J].高校地质学报,2021,27(4):432-443.LI Fengfeng,GUO Rui,SONG Shiqi.Impacts of the sedimentation and diagenesis on reservior physical property under the control of sequence:a case study of the Cretaceous Mishrif Formation,A oilfield in the middle east[J].Geological Journal of China Universities,2021,27(4):432-443.

    • [9] MAHDI T A,AQRAWI A A M.Sequence stratigraphic analysis of the mid-cretaceous Mishrif Formation,southern Mesopotamian Basin,Iraq[J].Journal of Petroleum Geology,2014,37(3):287-312.

    • [10] 李峰峰,李蕾,万继方,等.伊拉克X油田碳酸盐岩隔夹层隐蔽性特征及封隔性评价[J].中国石油大学学报(自然科学版),2024,48(4):1-11.LI Fengfeng,LI Lei,WAN Jifang,et al.Hidden characteristics and sealed property evaluation of carbonate baffles and barrier in X Oilfield,Iraq[J].Journal of China University of Petroleum(Edition of Natural Science),2024,48(4):1-11.

    • [11] 李峰峰,宋新民,郭睿,等.厚层生物碎屑灰岩油藏隔夹层特征及成因:以中东地区M油田白垩系Mishrif组为例[J].石油学报,2021,42(7):853-864.LI Fengfeng,SONG Xinmin,GUO Rui,et al.Characteristics and genesis of interlayers in thick bioclastic limestone reservoirs:a case study of Cretaceous Mishrif Formation of the M oilfield in the Middle East[J].Acta Petrolei Sinica,2021,42(7):853-864.

    • [12] LIU H,SHI K,LIU B,et al.The characteristics and origins of thief zones in the Cretaceous limestone reservoirs of Central and southern Mesopotamian Basin[J].Journal of Petroleum Science and Engineering,2021,201:1-17.

    • [13] 余义常,宋新民,林敏捷,等.伊拉克H油田Mishrif组下段隔夹层特征及开发策略[J].中国石油大学学报(自然科学版),2023,47(2):1-12.YU Yichang,SONG Xinmin,LIN Minjie,et al.Characteristics and development strategies of interlayers in the lower member of Mishrif Formation in H Oilfield,Iraq[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(2):1-12.

    • [14] 韩海英,田中元,徐振永,等.伊拉克W油田白垩系生物碎屑灰岩储层高渗层成因及分布规律[J].海相油气地质,2022,27(3):261-270.HAN Haiying,TIAN Zhongyuan,XU Zhenyong,et al.Genesis and distribution of high permeable streaks of the Cretaceous bioclastic limestone reservoir in W Oilfield,Iraq[J].Marine Origin Petroleum Geology,2022,27(3):261-270.

    • [15] HUSSAIN S A,AL-OBAIDI M,KHWEDIM K,et al.Facies architecture,diagenesis and paleoceanography of Mishrif(Late Cretaceous)in selected wells of west qurna oil field,southern Iraq[J].Journal of Physics:Conference Series,2020,1664(1):1-16.

    • [16] MAHDI T A,AQRAWI A A M.Role of facies diversity and cyclicity on the reservoir quality of the mid-Cretaceous Mishrif Formation in the southern Mesopotamian Basin,Iraq[J].Geological Society,London,Special Publications,2018,435(1):85-105.

    • [17] HOLLIS C.Diagenetic controls on reservoir properties of carbonate successions within the Albian-Turonian of the Arabian Plate[J].Petroleum Geoscience,2011,17(3):223-241.

    • [18] 李峰峰,郭睿,宋世琦.中东M油田白垩系Mishrif组碳酸盐岩储层特征及主控因素[J].中国石油大学学报(自然科学版),2021,45(6):12-24.LI Fengfeng,GUO Rui,SONG Shiqi.Reservoir characteristics of carbonate rock of Mishrif Formation in Cretaceous,M Oilfield in the Middle East[J].Journal of China University of Petroleum(Edition of Natural Science),2021,45(6):12-24.

    • [19] 衣丽萍,许家铖,韩海英,等.基于沉积相—岩石类型控制的生物碎屑灰岩油藏三维地质建模方法研究:以伊拉克H油田白垩系Mishrif组为例[J].中国石油勘探,2022,27(2):150-162.YI Liping,XU Jiacheng,HAN Haiying,et al.Research on 3D geological modeling method of bioclastic limestone oil reservoir controlled by sedimentary facies and rock type:a case study of the Cretaceous Mishrif Formation in H Oilfield,Iraq[J].China Petroleum Exploration,2022,27(2):150-162.

    • [20] WANG R,WANG Z,OSUMANU A,et al.Grid density overlapping hierarchical algorithm for clustering of carbonate reservoir rock types:a case from Mishrif Formation of West Qurna-1 oilfield,Iraq[J].Journal of Petroleum Science and Engineering,2019,182:1-19.

    • [21] 宋新民,李勇.中东碳酸盐岩油藏注水开发思路与对策[J].石油勘探与开发,2018,45(4):679-689.SONG Xinmin,LI Yong.Optimum development options and strategies for water injection development of carbonate reservoirs in the Middle East[J].Petroleum Exploration and Development,2018,45(4):679-689.

    • [22] 李勇,赵丽敏,王舒,等.碳酸盐岩油藏水平井井网周期性交替注水技术[J].石油勘探与开发,2021,48(5):986-994.LI Yong,ZHAO Limin,WANG Shu,et al.Using cyclic alternating water injection to enhance oil recovery for carbonate reservoirs developed by linear horizontal well pattern[J].Petroleum Exploration and Development,2021,48(5):986-994.

    • [23] 赵丽敏,周文,钟原,等.伊拉克H油田Mishrif组储集层含油性差异主控因素分析[J].石油勘探与开发,2019,46(2):302-311.ZHAO Limin,ZHOU Wen,ZHONG Yuan,et al.Control factors of reservoir oil-bearing difference of Cretaceous Mishrif Formation in the H oilfield,Iraq[J].Petroleum Exploration and Development,2019,46(2):302-311.

    • [24] 孙文举,乔占峰,邵冠铭,等.伊拉克哈法亚油田中白垩统Mishrif组MB1-2亚段沉积与储集层构型[J].石油勘探与开发,2020,47(4):713-722.SUN Wenju,QIAO Zhanfeng,SHAO Guanming,et al.Sedimentary and reservoir architectures of MB1-2 sub-member of Middle Cretaceous Mishrif Formation of Halfaya Oilfield in Iraq[J].Petroleum Exploration and Development,2020,47(4):713-722.

    • [25] 李峰峰,郭睿,刘立峰,等.伊拉克M油田白垩系Mishrif组潟湖环境碳酸盐岩储集层成因机理[J].地球科学,2021,46(1):228-241.LI Fengfeng,GUO Rui,LIU Lifeng,et al.Genesis of reservoirs of lagoon in the Mishrif Formation,M oilfield,Iraq[J].Earth Science,2021,46(1):228-241.

    • [26] 何登发,何金有,文竹,等.伊拉克油气地质与勘探潜力[M].北京:石油工业出版社,2013:167-173.

    • [27] MEHRABI H,RAHIMPOUR-BONAB H.Paleoclimate and tectonic controls on the depositional and diagenetic history of the Cenomanian-early Turonian carbonate reservoirs,Dezful Embayment,SW Iran[J].Facies,2014,60(1):147-167.

    • [28] SHERWANI G H M,AQRAWI A A M.Lithostratigraphy and environmental considerations of cenomanian-early turonian shelf carbonates(Rumaila and Mishrif Formations)of Mesopotamian Basin,middle and southern Iraq[J].AAPG Bulletin,1987,71:64.

    • [29] STANLEY G D.The evolution of modern corals and their early history[J].Earth-Science Reviews,2003,60(3/4):195-225.

    • [30] BURCHETTE T P.Mishrif Formation(cenomanian-turonian),southern Arabian Gulf:carbonate platform growth along a Cratonic Basin margin[J].Cretaceous Carbonate Platform,1993,56(1):185-199.

    • [31] TONI SIMO J A,SCOTT R W,MASSE J P.Cretaceous carbonate platforms:an overview[M]//Cretaceous carbonate platforms.Tulsa:American Association of Petroleum Geologists,1993:1-14.

    • [32] SADOONI F N.The nature and origin of Upper Cretaceous basin-margin rudist buildups of the Mesopotamian Basin,southern Iraq,with consideration of possible hydrocarbon stratigraphic entrapment[J].Cretaceous Research,2005,26(2):213-224.

    • [33] FLÜGEL E.Microfacies of carbonate rocks:analysis,interpretation and application[M].New York:Springer,2004:267-334.

    • [34] 杨磊磊,魏国,于志超,等.四川盆地灯影组多类型流体多期次改造作用下孔隙度演化的定量研究[J].中国石油大学学报(自然科学版),2024,48(3):15-26.YANG Leilei,WEI Guo,YU Zhichao,et al.Quantitative study on porosity evolution under multi-stage reformation of multi-type fluids in Dengying Formation,Sichuan Basin[J].Journal of China University of Petroleum(Edition of Natural Science),2024,48(3):15-26.

    • [35] 张世铭,袁剑英,张小军,等.柴西下干柴沟组咸化湖盆碳酸盐岩溶蚀模拟试验[J].中国石油大学学报(自然科学版),2023,47(1):1-11.ZHANG Shiming,YUAN Jianying,ZHANG Xiaojun,et al.Dissolution simulation experiment of carbonate rock in saline lacustrine basin of lower Ganchaigou Formation in western Qaidam Basin[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(1):1-11.

    • [36] 国家能源局.油气储层评价方法:SY/T 6285—2011[S].北京:石油工业出版社,2011:2.

    • [37] PETER A S,DANA S U S.A color guide to the petrography of carbonate rocks:grains,textures,porosity,diagenesis[M].Oklahoma:The American Association of Petroleum Geologists,2003:328-339.

  • 参考文献

    • [1] 王宜林,宋新民,王贵海,等.中东地区油气合作区快速规模上产关键技术与实践[J].石油学报,2020,41(12):1633-1642.WANG Yilin,SONG Xinmin,WANG Guihai,et al.Key technologies and practices for rapid and large-scale production increase in cooperation oil and gas fields of the Middle East[J].Acta Petrolei Sinica,2020,41(12):1633-1642.

    • [2] 周长迁,张庆春,杨沛广,等.美索不达米亚盆地成藏主控因素分析[J].石油实验地质,2013,35(3):296-301.ZHOU Changqian,ZHANG Qingchun,YANG Peiguang,et al.Main controlling factors of hydrocarbon accumulation in Mesopotamia Basin[J].Petroleum Geology & Experiment,2013,35(3):296-301.

    • [3] SADOONI F N,AQRAWI A A M.Cretaceous sequence stratigraphy and petroleum potential of the Mesopotamian Basin,Iraq[J].Society for Sedimentary Geology,2000,69:315-334.

    • [4] AQRAWI A A M,THEHNI G A,SHERWANI G H,et al.Mid-cretaceous rudist-bearing carbonates of the Mishrif Formation:an important reservoir sequence in the Mesopotamian Basin,Iraq[J].Journal of Petroleum Geology,1998,21(1):57-82.

    • [5] BROMHEAD A D,VAN BUCHEM F S P,SIMMONS M D,et al.Sequence stratigraphy,palaeogeography and petroleum plays of the cenomanian-turonian succession of the Arabian plate:an updated synthesis[J].Journal of Petroleum Geology,2022,45(2):119-161.

    • [6] MAHDI T A,AQRAWI A A M,HORBURY A D,et al.Sedimentological characterization of the mid-Cretaceous Mishrif reservoir in southern Mesopotamian Basin,Iraq[J].GeoArabia,2013,18(1):139-174.

    • [7] 刘航宇,田中元,刘波,等.中东地区巨厚强非均质碳酸盐岩储层分类与预测:以伊拉克W油田中白垩统Mishrif组为例[J].石油学报,2019,40(6):677-691.LIU Hangyu,TIAN Zhongyuan,LIU Bo,et al.Classification and prediction of giant thick strongly heterogeneous carbonate reservoirs in the Middle East area:a case study of Mid-Cretaceous Mishrif Formation in the W oilfield of Iraq[J].Acta Petrolei Sinica,2019,40(6):677-691.

    • [8] 李峰峰,郭睿,宋世琦.层序格架约束下沉积、成岩作用对岩石物性的控制:以中东A油田白垩系Mishrif组为例[J].高校地质学报,2021,27(4):432-443.LI Fengfeng,GUO Rui,SONG Shiqi.Impacts of the sedimentation and diagenesis on reservior physical property under the control of sequence:a case study of the Cretaceous Mishrif Formation,A oilfield in the middle east[J].Geological Journal of China Universities,2021,27(4):432-443.

    • [9] MAHDI T A,AQRAWI A A M.Sequence stratigraphic analysis of the mid-cretaceous Mishrif Formation,southern Mesopotamian Basin,Iraq[J].Journal of Petroleum Geology,2014,37(3):287-312.

    • [10] 李峰峰,李蕾,万继方,等.伊拉克X油田碳酸盐岩隔夹层隐蔽性特征及封隔性评价[J].中国石油大学学报(自然科学版),2024,48(4):1-11.LI Fengfeng,LI Lei,WAN Jifang,et al.Hidden characteristics and sealed property evaluation of carbonate baffles and barrier in X Oilfield,Iraq[J].Journal of China University of Petroleum(Edition of Natural Science),2024,48(4):1-11.

    • [11] 李峰峰,宋新民,郭睿,等.厚层生物碎屑灰岩油藏隔夹层特征及成因:以中东地区M油田白垩系Mishrif组为例[J].石油学报,2021,42(7):853-864.LI Fengfeng,SONG Xinmin,GUO Rui,et al.Characteristics and genesis of interlayers in thick bioclastic limestone reservoirs:a case study of Cretaceous Mishrif Formation of the M oilfield in the Middle East[J].Acta Petrolei Sinica,2021,42(7):853-864.

    • [12] LIU H,SHI K,LIU B,et al.The characteristics and origins of thief zones in the Cretaceous limestone reservoirs of Central and southern Mesopotamian Basin[J].Journal of Petroleum Science and Engineering,2021,201:1-17.

    • [13] 余义常,宋新民,林敏捷,等.伊拉克H油田Mishrif组下段隔夹层特征及开发策略[J].中国石油大学学报(自然科学版),2023,47(2):1-12.YU Yichang,SONG Xinmin,LIN Minjie,et al.Characteristics and development strategies of interlayers in the lower member of Mishrif Formation in H Oilfield,Iraq[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(2):1-12.

    • [14] 韩海英,田中元,徐振永,等.伊拉克W油田白垩系生物碎屑灰岩储层高渗层成因及分布规律[J].海相油气地质,2022,27(3):261-270.HAN Haiying,TIAN Zhongyuan,XU Zhenyong,et al.Genesis and distribution of high permeable streaks of the Cretaceous bioclastic limestone reservoir in W Oilfield,Iraq[J].Marine Origin Petroleum Geology,2022,27(3):261-270.

    • [15] HUSSAIN S A,AL-OBAIDI M,KHWEDIM K,et al.Facies architecture,diagenesis and paleoceanography of Mishrif(Late Cretaceous)in selected wells of west qurna oil field,southern Iraq[J].Journal of Physics:Conference Series,2020,1664(1):1-16.

    • [16] MAHDI T A,AQRAWI A A M.Role of facies diversity and cyclicity on the reservoir quality of the mid-Cretaceous Mishrif Formation in the southern Mesopotamian Basin,Iraq[J].Geological Society,London,Special Publications,2018,435(1):85-105.

    • [17] HOLLIS C.Diagenetic controls on reservoir properties of carbonate successions within the Albian-Turonian of the Arabian Plate[J].Petroleum Geoscience,2011,17(3):223-241.

    • [18] 李峰峰,郭睿,宋世琦.中东M油田白垩系Mishrif组碳酸盐岩储层特征及主控因素[J].中国石油大学学报(自然科学版),2021,45(6):12-24.LI Fengfeng,GUO Rui,SONG Shiqi.Reservoir characteristics of carbonate rock of Mishrif Formation in Cretaceous,M Oilfield in the Middle East[J].Journal of China University of Petroleum(Edition of Natural Science),2021,45(6):12-24.

    • [19] 衣丽萍,许家铖,韩海英,等.基于沉积相—岩石类型控制的生物碎屑灰岩油藏三维地质建模方法研究:以伊拉克H油田白垩系Mishrif组为例[J].中国石油勘探,2022,27(2):150-162.YI Liping,XU Jiacheng,HAN Haiying,et al.Research on 3D geological modeling method of bioclastic limestone oil reservoir controlled by sedimentary facies and rock type:a case study of the Cretaceous Mishrif Formation in H Oilfield,Iraq[J].China Petroleum Exploration,2022,27(2):150-162.

    • [20] WANG R,WANG Z,OSUMANU A,et al.Grid density overlapping hierarchical algorithm for clustering of carbonate reservoir rock types:a case from Mishrif Formation of West Qurna-1 oilfield,Iraq[J].Journal of Petroleum Science and Engineering,2019,182:1-19.

    • [21] 宋新民,李勇.中东碳酸盐岩油藏注水开发思路与对策[J].石油勘探与开发,2018,45(4):679-689.SONG Xinmin,LI Yong.Optimum development options and strategies for water injection development of carbonate reservoirs in the Middle East[J].Petroleum Exploration and Development,2018,45(4):679-689.

    • [22] 李勇,赵丽敏,王舒,等.碳酸盐岩油藏水平井井网周期性交替注水技术[J].石油勘探与开发,2021,48(5):986-994.LI Yong,ZHAO Limin,WANG Shu,et al.Using cyclic alternating water injection to enhance oil recovery for carbonate reservoirs developed by linear horizontal well pattern[J].Petroleum Exploration and Development,2021,48(5):986-994.

    • [23] 赵丽敏,周文,钟原,等.伊拉克H油田Mishrif组储集层含油性差异主控因素分析[J].石油勘探与开发,2019,46(2):302-311.ZHAO Limin,ZHOU Wen,ZHONG Yuan,et al.Control factors of reservoir oil-bearing difference of Cretaceous Mishrif Formation in the H oilfield,Iraq[J].Petroleum Exploration and Development,2019,46(2):302-311.

    • [24] 孙文举,乔占峰,邵冠铭,等.伊拉克哈法亚油田中白垩统Mishrif组MB1-2亚段沉积与储集层构型[J].石油勘探与开发,2020,47(4):713-722.SUN Wenju,QIAO Zhanfeng,SHAO Guanming,et al.Sedimentary and reservoir architectures of MB1-2 sub-member of Middle Cretaceous Mishrif Formation of Halfaya Oilfield in Iraq[J].Petroleum Exploration and Development,2020,47(4):713-722.

    • [25] 李峰峰,郭睿,刘立峰,等.伊拉克M油田白垩系Mishrif组潟湖环境碳酸盐岩储集层成因机理[J].地球科学,2021,46(1):228-241.LI Fengfeng,GUO Rui,LIU Lifeng,et al.Genesis of reservoirs of lagoon in the Mishrif Formation,M oilfield,Iraq[J].Earth Science,2021,46(1):228-241.

    • [26] 何登发,何金有,文竹,等.伊拉克油气地质与勘探潜力[M].北京:石油工业出版社,2013:167-173.

    • [27] MEHRABI H,RAHIMPOUR-BONAB H.Paleoclimate and tectonic controls on the depositional and diagenetic history of the Cenomanian-early Turonian carbonate reservoirs,Dezful Embayment,SW Iran[J].Facies,2014,60(1):147-167.

    • [28] SHERWANI G H M,AQRAWI A A M.Lithostratigraphy and environmental considerations of cenomanian-early turonian shelf carbonates(Rumaila and Mishrif Formations)of Mesopotamian Basin,middle and southern Iraq[J].AAPG Bulletin,1987,71:64.

    • [29] STANLEY G D.The evolution of modern corals and their early history[J].Earth-Science Reviews,2003,60(3/4):195-225.

    • [30] BURCHETTE T P.Mishrif Formation(cenomanian-turonian),southern Arabian Gulf:carbonate platform growth along a Cratonic Basin margin[J].Cretaceous Carbonate Platform,1993,56(1):185-199.

    • [31] TONI SIMO J A,SCOTT R W,MASSE J P.Cretaceous carbonate platforms:an overview[M]//Cretaceous carbonate platforms.Tulsa:American Association of Petroleum Geologists,1993:1-14.

    • [32] SADOONI F N.The nature and origin of Upper Cretaceous basin-margin rudist buildups of the Mesopotamian Basin,southern Iraq,with consideration of possible hydrocarbon stratigraphic entrapment[J].Cretaceous Research,2005,26(2):213-224.

    • [33] FLÜGEL E.Microfacies of carbonate rocks:analysis,interpretation and application[M].New York:Springer,2004:267-334.

    • [34] 杨磊磊,魏国,于志超,等.四川盆地灯影组多类型流体多期次改造作用下孔隙度演化的定量研究[J].中国石油大学学报(自然科学版),2024,48(3):15-26.YANG Leilei,WEI Guo,YU Zhichao,et al.Quantitative study on porosity evolution under multi-stage reformation of multi-type fluids in Dengying Formation,Sichuan Basin[J].Journal of China University of Petroleum(Edition of Natural Science),2024,48(3):15-26.

    • [35] 张世铭,袁剑英,张小军,等.柴西下干柴沟组咸化湖盆碳酸盐岩溶蚀模拟试验[J].中国石油大学学报(自然科学版),2023,47(1):1-11.ZHANG Shiming,YUAN Jianying,ZHANG Xiaojun,et al.Dissolution simulation experiment of carbonate rock in saline lacustrine basin of lower Ganchaigou Formation in western Qaidam Basin[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(1):1-11.

    • [36] 国家能源局.油气储层评价方法:SY/T 6285—2011[S].北京:石油工业出版社,2011:2.

    • [37] PETER A S,DANA S U S.A color guide to the petrography of carbonate rocks:grains,textures,porosity,diagenesis[M].Oklahoma:The American Association of Petroleum Geologists,2003:328-339.