en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

熊驷骏(1993-),男,博士研究生,研究方向为微生物地质学。E-mail: xiongsj@student.cup.edu.cn。

通信作者:

万云洋(1978-),男,教授,博士,博士生导师,研究方向为微生物地质学。E-mail: wanyunyang@cup.edu.cn。

中图分类号:Q 503.23;TE 99

文献标识码:A

文章编号:1673-5005(2025)04-0224-07

DOI:10.3969/j.issn.1673-5005.2025.04.024

参考文献 1
穆红梅,万云洋.稠油藏不同开发方式地层水微生物群落功能多样性[J].生物资源,2018,40(2):120-129.MU Hongmei,WAN Yunyang.Functional diversity on microbial communities in formation water with different exploitation methods in heavy oil reservoirs[J].Biotic Resources,2018,40(2):120-129.
参考文献 2
田燕,万云洋,穆红梅,等.中国不同油藏微生物多样性研究:第六届全国微生物资源学术暨国家微生物资源平台运行服务研讨会[C].厦门:中国微生物学会微生物资源专业委员会,2014:12-14.
参考文献 3
MARK P,LISA K,HUBERT M,et al.Oil reservoirs,an exceptional habitat for microorganisms[J].New Biotechnology,2019,49:1-9.
参考文献 4
TIAN Y,WAN Y Y,MU H M,et al.Microbial diversity in high-temperature heavy oil reservoirs[J].Geomicrobiology Journal,2020,37(1):59-66.
参考文献 5
田燕,万云洋,孙午阳,等.高效石油降解菌的筛选及稳定性[J].中国石油大学学报(自然科学版),2018,42(5):126-134.TIAN Yan,WAN Yunyang,SUN Wuyang,et al.Screening and stability of high efficiency oil-degradation microorganisms[J].Journal of China University of Petroleum(Edition of Natural Science),2018,42(5):126-134.
参考文献 6
WAN Y Y,LUO N,LIU X L,et al.Cupidesulfovibrio liaohensis gen nov,sp nov,a novel sulphate-reducing bacterium isolated from an oil reservoir and reclassification of Desulfovibrio oxamicus and Desulfovibrio termitidis as Cupidesulfovibrio oxamicus comb nov and Cupidesulfovibrio termitidis comb nov[J].International Journal of Systematic and Evolutionary Microbiology,2021,71(2):004618.
参考文献 7
熊驷骏,万云洋,穆红梅,等.基于自主核酸提取方法分析单油井采出液微生物[J].油气田环境保护,2022,32(2):16-22.XIONG Sijun,WAN Yunyang,MU Hongmei,et al.Analyses of oil-water microorganisms in an exploiting single well based on home-made DNA extraction method[J].Environmental Protection of Oil & Gas Fields,2022,32(2):16-22.
参考文献 8
ZHANG F,SHE Y,CHAI L,et al.Microbial diversity in long-term water-flooded oil reservoirs with different in situ temperatures in China[J].Scientific Reports,2012,2(1):1-10.
参考文献 9
MU H M,WAN Y Y,WU B C,et al.A rapid change in microbial communities of the shale gas drilling fluid from 3548 m depth to the above-ground storage tank[J].Science of the Total Environment,2021,784:147009.
参考文献 10
KAEBERLEIN T,LEWIS K,EPSTEIN S S.Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment[J].Science,2002,296(5570):1127-1129.
参考文献 11
万云洋,董海良.环境地质微生物学实验指导[M].北京:石油工业出版社,2014:185-187.
参考文献 12
董海良,蒋宏忱.地质微生物学[M].北京:高等教育出版社,2023:81-89.
参考文献 13
万云洋,洪宁,顾雪莹,等.油藏采出液总脱氧核糖核酸提取方法的比较:中国化学会第29届学术年会[C].北京:中国化学会,2014:1.
参考文献 14
WANG L Y,KE W J,SUN X B,et al.Comparison of bacterial community in aqueous and oil phases of water-flooded petroleum reservoirs using pyrosequencing and clone library approaches[J].Applied Microbiology and Biotechnology,2014,98(9):4209-4221.
参考文献 15
万云洋,穆红梅,洪宁,等.提取原油总脱氧核糖核酸的方法及试剂盒:ZL 201710116846.5[P].2019-08-13.
参考文献 16
万云洋,穆红梅,熊驷骏,等.提取稠油基因组脱氧核糖核酸的方法及试剂盒和应用:ZL 201980096695.9[P].2024-01-19.
参考文献 17
GUO F,ZHANG T.Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing[J].Applied Microbiology and Biotechnology,2013,97(10):4607-4616.
参考文献 18
EMAUS M N,VARONA M,EITZMANN D R,et al.Nucleic acid extraction:fundamentals of sample preparation methodologies,current advancements,and future endeavors[J].Trac Trends in Analytical Chemistry,2020,130:115985.
参考文献 19
NAEGELE K,WEISSBACH F H,LEUZINGER K,et al.Impact of nucleic acid extraction procedures on human papillomavirus(HPV)detection and genotyping[J].Journal of Medical Virology,2023,95(2):e28583.
参考文献 20
KLINDWORTH A,PRUESSE E,SCHWEER T,et al.Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies[J].Nucleic Acids Research,2013,41(1):e1.
参考文献 21
LIU Y,XU P P,YANG F Z,et al.Composition and diversity of endophytic bacterial community in seeds of super hybrid rice 'Shenliangyou 5814'(Oryza sativa L.)and its parental lines[J].Plant Growth Regulation,2019,87(2):257-266.
参考文献 22
穆红梅.中国典型稠油藏微生物生物量和硫循环功能研究[D].北京:中国石油大学(北京),2019.MU Hongmei.Study on microbial biomass and sulfur cycle function in typical heavy oil reservoirs in China[D].Beijing:China University of Petroleum(Beijing),2019.
参考文献 23
SILVA T R,VERDE L C L,NETO E V S,et al.Diversity analyses of microbial communities in petroleum samples from Brazilian oil fields[J].International Biodeterioration & Biodegradation,2013,81:57-70.
参考文献 24
BASIM Y,MOHEBALI G,JORFI S,et al.Bacterial strains diversity in contaminated soils and their potential for bioremediation of total petroleum hydrocarbons in south west of Iran[J].Journal of Environmental Health Science and Engineering,2022,20(2):601-608.
参考文献 25
LAVERNTYEVA E,ERDYNEEVA E B,BANZARAKTSAEVA T G,et al.Prokaryotic diversity in the biotopes of the gudzhirganskoe saline lake(barguzin valley,Russia)[J].Microbiology,2020,89(3):359-368.
参考文献 26
KODAMA Y,HA L T,WATANABE K.Sulfurospirillum cavolei sp nov,a facultatively anaerobic sulfur-reducing bacterium isolated from an underground crude oil storage cavity[J].International Journal of Systematic and Evolutionary Microbiology,2007,57(4):827-831.
参考文献 27
SANTOS J C D,LOPES D R G,DA SILVA J D,et al.Diversity of sulfate-reducing prokaryotes in petroleum production water and oil samples[J].International Biodeterioration & Biodegradation,2020,151:104966.
参考文献 28
WANG S J,WANG X.Bioremediation of petroleum contaminated soils collected all around China:the extensive application and the microbial mechanism[J].Petroleum Science and Technology,2018,36(13):974-980.
参考文献 29
MSADDAK A,MARS M,QUINONES M A,et al.Lupin,a unique legume that is nodulated by multiple microsymbionts:the role of horizontal gene transfer[J].International Journal of Molecular Sciences,2023,24(7):6496.
参考文献 30
PRADEL N,FARDEAU M,BUNK B,et al.Aminithiophilus ramosus gen nov,sp nov,a sulphur-reducing bacterium isolated from a pyrite-forming enrichment culture,and taxonomic revision of the family Synergistaceae[J].International Journal of Systematic and Evolutionary Microbiology,2023,73(2):005691.
参考文献 31
JIN J N,SHI Y H,ZHANG B Z,et al.Biotransformation of benzo[a]pyrene by Pannonibacter sp JPA3 and the degradation mechanism through the initially oxidized benzo[a]pyrene-4,5-dihydrodiol to downstream metabolites[J].Royal Society of Chemistry,2023,13(27):18878-18887.
参考文献 32
ZHOU L,WU J,JI J H,et al.Characteristics of microbiota,core sulfate-reducing taxa and corrosion rates in production water from five petroleum reservoirs in China[J].Science of the Total Environment,2023,858:159861.
参考文献 33
FARKAS M,TANCSICS A,KRISZT B,et al.Zoogloea oleivorans sp nov,a floc-forming,petroleum hydrocarbon-degrading bacterium isolated from biofilm[J].International Journal of Systematic and Evolutionary Microbiology,2015,65(Pt1):274-279.
参考文献 34
OJEDA-MORALES M E,DOMINGUEZ-DOMINGUEZ M,HERNANDEZ-RIVERA M A,et al.Biosurfactant production by strains of Azospirillum isolated from petroleum-contaminated sites[J].Water Air and Soil Pollution,2015,226(12):401.
参考文献 35
GAO P K,TIAN H M,LI G Q,et al.Microbial diversity and abundance in the Xinjiang Luliang long-term water-flooding petroleum reservoir[J].Microbiologyopen,2015,4(2):332-342.
参考文献 36
LUO S W,ZHEN Z,TENG T T,et al.New mechanisms of biochar-assisted vermicomposting by recognizing different active di-(2-ethylhexyl)phthalate(DEHP)degraders across pedosphere,charosphere and intestinal sphere[J].Journal of Hazardous Materials,2023,458:131990.
参考文献 37
ZHU N,WANG J,WANG Y,et al.Differences in geological conditions have reshaped the structure and diversity of microbial communities in oily soils[J].Environmental Pollution,2022,306:119404.
参考文献 38
NALVOTHULA R,CHALLA S,PEDDIREDDY V,et al.Isolation,molecular identification and amino acid profiling of single-cell-protein-producing phototrophic bacteria isolated from oil-contaminated soil samples[J].Molecules,2022,27(19):6265.
参考文献 39
CHEN W M,WANG F,ZENG L,et al.Bioremediation of petroleum-contaminated soil by semi-aerobic aged refuse biofilter:optimization and mechanism[J].Journal of Cleaner Production,2021,294:125354.
参考文献 40
WAN Y Y,MU H M,LUO N,et al.Rapid accuracy determining DNA purity and concentration in heavy oils by spectrophotometry methods[J].Petroleum Science,2023,20(6):3394-3399.
参考文献 41
万云洋,董海良.油气田微生物学实验研究方法[M].北京:石油工业出版社,2023:208-212.
目录contents

    摘要

    直接提取原油脱氧核糖核酸(DNA)是分析原油微生物群落和多样性最基础、最重要的第一步。分别用柱式法(SE)和磁珠法(ME)提取12份原油样品的微生物基因组总DNA,并通过因美纳(Illumina)高通量测序进一步分析其微生物多样性和群落差异。结果表明: SE的DNA质量浓度和纯度(A260/A280比值,其中A为吸光度)分别为20.17±31.83 ng/μL和1.01±0.63,ME的DNA质量浓度和纯度分别为11.14±17.27 ng/μL和1.29±0.20;SE检出30门和507属,ME检出38门和677属,其中未分类属和未培养属的相对含量分别为1.12%和0.20%(SE)、1.24%和1.10%(ME);两种方法均检测到专有属(SE专有65属,ME专有235属),SE检出油藏微生物如地杆菌属Geobacter)等,ME检出疑似油藏微生物如黄杆菌属Xanthobacter);两种方法在原油DNA提取方面各有优劣,SE提取质量浓度高并对油藏微生物有更好响应,ME检测微生物多样性能力略强,但两种方法在分类学水平上均有较强的偏向性。

    Abstract

    Direct extraction of deoxyribonucleic acid (DNA) from petroleum is the most fundamental and most important step for analyses of its microbial community and diversity. The spincolumn based extraction method (SE) and the magnetisable solid phase extraction method (ME) were used to obtain the total DNA of microbial genome of 12 petroleum samples, respectively. And their difference of microbial diversity and community were analyzed further more through Illumina high throughput sequences. The results show that the DNA mass concentration and purity (A260/A280 ratio) are 20.17±31.83 ng/μL and 1.01±0.63 of SE, and 11.14±17.27 ng/μL and 1.29±0.20 of ME, respectively. SE detects 30 phyla and 507 genera, while ME detects 38 phyla and 677 genera, in which the relative content of unclassified and uncultured genera are 1.12% and 0.20% (SE), 1.24% and 1.10% (ME), respectively. Unique genera are detected by both methods (SE: 65 genera and ME: 235 genera). SE detects reservoir microorganisms such as Geobacter, and ME detects suspected reservoir microorganisms such as Xanthobacter. Both methods have advantages and disadvantages in petroleum DNA extraction. SE has a higher extraction mass concentration and better response to oil reservoir microorganisms. ME has a slightly stronger ability to detect microbial diversity in petroleum, but both methods have strong detection bias at the taxonomic level.

  • 油藏中蕴含了丰富的微生物资源[1-4],目前研究油藏微生物多样性主要是培养[5-6]和非培养[7-9]方法,但迄今环境中可培养的微生物资源不足1%[10],而非培养方法优势在于样本的直接检测更为快速、灵敏,丰富了油藏微生物群落结构和多样性等特征[11-12],其首要问题是核酸提取[47-8],原油具有黏稠、浓黑、生物量低和试剂可及性差等特点,这使得提取原油总DNA较为困难[13],基于传统柱式法(SE)的改进已出现为数不多适用于原油微生物总DNA的提取方法[14-16],但不同核酸提取方法获取DNA纯度和质量浓度的差异将直接影响测序分析的灵敏度[17-18]和特异性[18-19]。核酸提取方法的分类主要基于纯化方式,柱式法和磁珠法(ME)是核酸提取最为常用的两类纯化方法[18],迄今尚未有相关报道评价它们对原油样本的适用性。笔者通过比较这两类方法对同批次原油微生物检出结果的差异以评价两方法对原油样本的适用性和偏向性。

  • 1 材料与方法

  • 1.1 材料

  • 从某油田长6层位12口不同的油井采集不同的轻质原油样本,于4℃冰盒中保存并迅速转移至实验室。实验试剂耗材若无特别说明,均为市售分析纯,经无菌处理使用[11]

  • 1.2 实验方法

  • 1.2.1 原油样本基因组DNA的提取和验证

  • 分别使用土壤基因组DNA提取试剂盒(DP336,天根生化科技(北京)有限公司,中国)和FineMag磁珠法通用型基因组DNA提取试剂盒(M202,济凡生物科技(北京)有限公司,中国)对12份原油样本进行平行基因组DNA提取,其中土壤基因组DNA提取试剂盒按说明书进行人工提取,FineMag磁珠法搭配该公司的核酸自动提取仪和适配的耗材进行提取,两方法提取过程严格按照对应说明书的要求进行。使用超微量分光光度计(Nanodrop2000,赛默飞世尔科技有限公司,美国)检测提取产物的纯度和质量浓度。

  • 1.2.2 高通量测序

  • 聚合酶链式反应使用覆盖细菌16S rRNA基因V3-V4区引物338F(5′-ACTCCTACGGGAGGCAGCA-3′)和806R(5′-GGACTACHVGGGTWTCTAAT-3′)[20],扩增程序为95℃预变性5 min;之后95℃/30 s,54℃/30 s,72℃/45 s,共26个循环;最后72℃延伸8 min。扩增产物经1%的琼脂糖凝胶电泳反应后切胶回收(DP219,天根生化科技(北京)有限公司,中国),由北京新科开源基因科技有限公司进行因美纳(Illumina)高通量建库和测序[4 21]

  • 2 结果分析

  • 2.1 结果

  • 2.1.1 原油基因组总DNA提取结果

  • SE检测12原油样本的总DNA纯度(A260/A280,其中A为吸光度)主要分布在0~1.67之间,平均纯度为1.01±0.63,质量浓度分布范围在0~109.39 ng/μL,平均质量浓度为20.17±31.83 ng/μL;ME检测的纯度范围为1.10~1.84,平均纯度为1.29±0.20,质量浓度分布范围为0.90~52.20 ng/μL,平均质量浓度为11.14±17.27 ng/μL(图1)。

  • 2.1.2 柱式法和磁珠法检出的菌群多样性

  • 稀释曲线描述了SE和ME处理原油样本时检出的微生物DNA样本多样性,柱式法和磁珠法检出原油微生物的OTU(分类操作单元)稀释曲线见图2。可以看出,当测序深度约为10000时,两法对应的曲线均趋于平台期,且操作分类单元数目nOTU(SE)<nOTU(ME)。

  • 图1 柱式法和磁珠法提取原油样本基因组总 DNA的纯度和质量浓度

  • Fig.1 Purity and mass concentration of genomic DNA of petroleum samples extracted by SE and ME

  • 柱式法和磁珠法检出的阿尔法多样性结果见表1。可以看出,ME和SE的趙1(Chao1)、丰富度(richness)、辛普逊(Simpson)和香农(Shannon)等4种不同的阿尔法多样性指数均显示nOTU(SE)<nOTU(ME)。

  • 表1 柱式法和磁珠法检出的阿尔法多样性

  • Table1 Alpha diversity detected by SE and ME

  • 图2 柱式法和磁珠法检出原油微生物的OTU稀释曲线

  • Fig.2 OTU dilution curves of petroleum microorganisms detected by SE and ME

  • 2.1.3 柱式法和磁珠法检出的菌群结构

  • 基于97%相似度的分类水平,注释到1 505个细菌和古菌的分类操作单元(OTU),有效序列1140006条,共分为40门和742属。其中,SE注释到890个OTU,有效序列507363条;ME为1335个,632643条。

  • SE和ME分别检出30门和38门,其中共有门30门,ME专有8门;SE和ME分别检出507属和677属,其中共有属442属,SE专有65属,ME专有235属(图3)。SE检出的未分类属和未培养属分别为39属和41属,ME为57属和53属(图3)。图3中,在门分类水平上本方法有检出,另一方法无检出;在属分类水平上本方法有检出,另一方法无检出。

  • 图3 柱式法和磁珠法对原油微生物检出的多样性在门和属水平的比较

  • Fig.3 Comparison of microbial diversity detected in petroleum by SE and ME at phylum and genus level

  • 门分类水平上,ME相对于SE多检出的8门分别为纳古菌门(Nanoarchaeota)、NB1-j、广古菌门(Euryarchaeota)、GAL15、候选_甲基奇丽菌门(Methylomirabilota)、卤杆菌门(Halobacterota)、粪热杆菌门(Coprothermobacterota)和热液菌门(Hydrothermae)。两种方法具有相同的的优势菌门,均为假单胞菌门(Pseudomonadota)、弯曲杆菌门(Campylobacterota)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteriota)和杆状菌门(Bacteroidota)等,其中主要优势门均为假单胞菌门(SE相对含量为69.6%,ME为61.1%)(图4)。图4中柱式法从下到上不同颜色顺序表示菌门相对含量由高至低,此顺序对应的(两列)图例顺序为从下到上、从左到右,磁珠法相对含量排序同柱式法。

  • 图4 柱式法和磁珠法检出原油菌群门水平相对含量

  • Fig.4 Relative content of phylum classification level in petroleum detected by SE and ME

  • 属分类水平上,假单胞菌属Pseudomonas,SE相对含量为51.4%,ME为19.7%)和软体杆菌属Malaciobacter,SE相对含量为20.3%,ME为15.0%)是两法共同的主要菌属,也是共同的优势菌属,SE的其余菌属相对含量均不足5.0%,而ME相对含量超出5.0%的还有玫瑰变菌属Roseovarius,7.7%)、竿菌属Bacillus,7.0%)、不运杆菌属Acinetobacter,6.2%)和淖单胞菌属Pelomonas,5.9%)(图5)。其他属中,SE检出未分类和未培养属的相对含量分别为1.12%和0.20%,ME的分别为1.24%和1.10%。图5中柱式法从下到上不同颜色顺序表示菌属相对含量由高至低,此顺序对应图例顺序为从下到上,磁珠法相对含量排序同柱式法。

  • SE检出的65属专有菌属中,检出率较高的菌属(由高到低)依次为地杆菌属(100%)、莫拉姓菌科_属(91.7%)、异海源菌属(83.3%)、硫小螺体属(83.3%)、诺卡氏菌属(75.0%)、叶小杆菌属(75%)、醋微菌属(66.7%)等;在ME检出的235属专有属中,检出率较高的菌属依次为潘浓杆菌属(91.7%)、活胶菌属(91.7%)、氮小螺体属(75%)、黄杆菌属(75%)、间孢囊菌科_未分类(66.7%)、洋竿菌属(66.7%)、玫假单胞菌属(66.7%)、糖单胞菌目_属(66.7%)等(表2)。

  • 图5 柱式法和磁珠法检出原油菌群属水平相对含量

  • Fig.5 Relative content of genus classification level in petroleum detected by SE and ME

  • 2.2 讨论

  • SE和ME代表方法及其对原油DNA纯度(A260/A280)、质量浓度的检出差异。纯度方面,ME(1.29±0.20)检测值大于SE(1.01±0.63),虽然两方法检测值均低于正常检出水平,这可能与轻质原油低密度相关[40],但ME更高的纯度值和更小的相对误差,可能得益于其标准化程序和更少的人为误差;质量浓度方面,SE检测值(20.17±31.83 ng/μL)高于ME(11.14±17.27 ng/μL)。基于SE和ME两方法的纯度分析,可能无法直接判断出其对核酸物质的捕获能力强弱,但较低的相对误差或说明ME的检测稳定性优于SE。

  • SE和ME检出的原油微生物菌群多样性差异。阿尔法多样性揭示了SE和ME检出的原油微生物种群及群落内物种的丰富度、多样性及差异[41]。其中,ME的4种指数均高于SE,表明ME检出原油微生物的物种丰富度、物种数量、均匀度和多样性等均高于SE。

  • SE和ME检出的原油微生物菌群结构。门分类水平上,ME检出的38门包含了SE的30门,并多检出8门,这可能是ME对微生物核酸捕获能力更强的直接证明;属分类水平上,SE和ME分别检出507属和677属,其中,共有442属,SE专有65属(约占SE检出属总数的12.8%),ME专有235属(约占ME检出属总数的34.7%),但值得一提的是,SE的检出属中假单胞菌属(OTU有效序列260742条)以51.4%的相对含量远高于其它菌属,而在ME中该属(OTU有效序列 124315条)仅为19.7%,所以从检出菌群的门和属结构看,ME对原油微生物总菌群呈现出更高的覆盖度,而SE则表现出更强的专性检出。但另一方面,SE仍检出了数量不低的专有属,也表明该SE并非仅是具备更高检出限,也表现出一定的专有响应,因而在原油微生物的检测方面,ME和SE各有优势。而对于样本中含量较低的其它类菌属,其中的未分类和未培养属在SE中检出的相对含量(1.12%和0.20%)略低于自动化程度高的ME(1.24%和1.10%)。从两方法检出的专有属看,在SE检出的65属专有属中,地杆菌属硫小螺体属作为常见的油藏采出液微生物,其高检出率(分别为100%和83.3%)证明了SE对油藏原位微生物检出的准确性,其它菌属虽然不是常见的油藏源微生物(表2),但一定程度上能代表油藏地层或土壤中的本源微生物,它们在本研究涉及的原油中均出现较高检出率,或表明SE对油藏地层中本源微生物具有较强的响应能力;在ME检出的235属专有属中,活胶菌属黄杆菌属氮小螺体属已有过在油藏采出液中检出的报道且在本研究中有较高的检出率,而其他菌属均为与原油污染相关的土壤修复功能菌属(表2),可说明此法对油藏地层微生物也具有良好的响应。从两法在属分类水平上的差异性检出看,ME和SE均具备各自独有的偏向性,也反映了两法对原油中微生物的检测灵敏度不足,单一微生物总DNA提取方法不足以全面检出或覆盖已知的油藏微生物,易造成整体上生物信息数据的缺失。

  • 表2 柱式法和磁珠法具有高检出率的专有属及其生境来源

  • Table2 Unique genera with high detection rate detected by SE and ME, and habitat sources of these genera

  • 注:a.使用醇类化学试剂沉淀核酸的纯化方法,属于更早期的DNA提取方法;b.从样本中分离、纯化培养以获得纯菌株。

  • 3 结束语

  • 绝大多数油藏微生物多样性的报道多为基于油井采出液,笔者首次在油藏微生物领域比较SE和ME直接对原油微生物DNA提取的适用性,进一步揭示了两类主流核酸提取方法的应用前景。本研究中对同一批的12个原油样本使用SE和ME两种方法提取核酸并进行了质量检测及菌群多样性分析,结果表明两方法对部分微生物存在专有的响应性,SE提取质量浓度更高并对油藏微生物有更好响应,ME灵敏度更高、稳定性更强并对微生物群落结构和多样性有更好的响应。

  • 致谢  感谢济凡生物科技(北京)有限公司提供的核酸提取试剂盒及自动化核酸提取仪(包含全套耗材),并分配专业的实验员提供客观和可靠的实验数据。

  • 参考文献

    • [1] 穆红梅,万云洋.稠油藏不同开发方式地层水微生物群落功能多样性[J].生物资源,2018,40(2):120-129.MU Hongmei,WAN Yunyang.Functional diversity on microbial communities in formation water with different exploitation methods in heavy oil reservoirs[J].Biotic Resources,2018,40(2):120-129.

    • [2] 田燕,万云洋,穆红梅,等.中国不同油藏微生物多样性研究:第六届全国微生物资源学术暨国家微生物资源平台运行服务研讨会[C].厦门:中国微生物学会微生物资源专业委员会,2014:12-14.

    • [3] MARK P,LISA K,HUBERT M,et al.Oil reservoirs,an exceptional habitat for microorganisms[J].New Biotechnology,2019,49:1-9.

    • [4] TIAN Y,WAN Y Y,MU H M,et al.Microbial diversity in high-temperature heavy oil reservoirs[J].Geomicrobiology Journal,2020,37(1):59-66.

    • [5] 田燕,万云洋,孙午阳,等.高效石油降解菌的筛选及稳定性[J].中国石油大学学报(自然科学版),2018,42(5):126-134.TIAN Yan,WAN Yunyang,SUN Wuyang,et al.Screening and stability of high efficiency oil-degradation microorganisms[J].Journal of China University of Petroleum(Edition of Natural Science),2018,42(5):126-134.

    • [6] WAN Y Y,LUO N,LIU X L,et al.Cupidesulfovibrio liaohensis gen nov,sp nov,a novel sulphate-reducing bacterium isolated from an oil reservoir and reclassification of Desulfovibrio oxamicus and Desulfovibrio termitidis as Cupidesulfovibrio oxamicus comb nov and Cupidesulfovibrio termitidis comb nov[J].International Journal of Systematic and Evolutionary Microbiology,2021,71(2):004618.

    • [7] 熊驷骏,万云洋,穆红梅,等.基于自主核酸提取方法分析单油井采出液微生物[J].油气田环境保护,2022,32(2):16-22.XIONG Sijun,WAN Yunyang,MU Hongmei,et al.Analyses of oil-water microorganisms in an exploiting single well based on home-made DNA extraction method[J].Environmental Protection of Oil & Gas Fields,2022,32(2):16-22.

    • [8] ZHANG F,SHE Y,CHAI L,et al.Microbial diversity in long-term water-flooded oil reservoirs with different in situ temperatures in China[J].Scientific Reports,2012,2(1):1-10.

    • [9] MU H M,WAN Y Y,WU B C,et al.A rapid change in microbial communities of the shale gas drilling fluid from 3548 m depth to the above-ground storage tank[J].Science of the Total Environment,2021,784:147009.

    • [10] KAEBERLEIN T,LEWIS K,EPSTEIN S S.Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment[J].Science,2002,296(5570):1127-1129.

    • [11] 万云洋,董海良.环境地质微生物学实验指导[M].北京:石油工业出版社,2014:185-187.

    • [12] 董海良,蒋宏忱.地质微生物学[M].北京:高等教育出版社,2023:81-89.

    • [13] 万云洋,洪宁,顾雪莹,等.油藏采出液总脱氧核糖核酸提取方法的比较:中国化学会第29届学术年会[C].北京:中国化学会,2014:1.

    • [14] WANG L Y,KE W J,SUN X B,et al.Comparison of bacterial community in aqueous and oil phases of water-flooded petroleum reservoirs using pyrosequencing and clone library approaches[J].Applied Microbiology and Biotechnology,2014,98(9):4209-4221.

    • [15] 万云洋,穆红梅,洪宁,等.提取原油总脱氧核糖核酸的方法及试剂盒:ZL 201710116846.5[P].2019-08-13.

    • [16] 万云洋,穆红梅,熊驷骏,等.提取稠油基因组脱氧核糖核酸的方法及试剂盒和应用:ZL 201980096695.9[P].2024-01-19.

    • [17] GUO F,ZHANG T.Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing[J].Applied Microbiology and Biotechnology,2013,97(10):4607-4616.

    • [18] EMAUS M N,VARONA M,EITZMANN D R,et al.Nucleic acid extraction:fundamentals of sample preparation methodologies,current advancements,and future endeavors[J].Trac Trends in Analytical Chemistry,2020,130:115985.

    • [19] NAEGELE K,WEISSBACH F H,LEUZINGER K,et al.Impact of nucleic acid extraction procedures on human papillomavirus(HPV)detection and genotyping[J].Journal of Medical Virology,2023,95(2):e28583.

    • [20] KLINDWORTH A,PRUESSE E,SCHWEER T,et al.Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies[J].Nucleic Acids Research,2013,41(1):e1.

    • [21] LIU Y,XU P P,YANG F Z,et al.Composition and diversity of endophytic bacterial community in seeds of super hybrid rice 'Shenliangyou 5814'(Oryza sativa L.)and its parental lines[J].Plant Growth Regulation,2019,87(2):257-266.

    • [22] 穆红梅.中国典型稠油藏微生物生物量和硫循环功能研究[D].北京:中国石油大学(北京),2019.MU Hongmei.Study on microbial biomass and sulfur cycle function in typical heavy oil reservoirs in China[D].Beijing:China University of Petroleum(Beijing),2019.

    • [23] SILVA T R,VERDE L C L,NETO E V S,et al.Diversity analyses of microbial communities in petroleum samples from Brazilian oil fields[J].International Biodeterioration & Biodegradation,2013,81:57-70.

    • [24] BASIM Y,MOHEBALI G,JORFI S,et al.Bacterial strains diversity in contaminated soils and their potential for bioremediation of total petroleum hydrocarbons in south west of Iran[J].Journal of Environmental Health Science and Engineering,2022,20(2):601-608.

    • [25] LAVERNTYEVA E,ERDYNEEVA E B,BANZARAKTSAEVA T G,et al.Prokaryotic diversity in the biotopes of the gudzhirganskoe saline lake(barguzin valley,Russia)[J].Microbiology,2020,89(3):359-368.

    • [26] KODAMA Y,HA L T,WATANABE K.Sulfurospirillum cavolei sp nov,a facultatively anaerobic sulfur-reducing bacterium isolated from an underground crude oil storage cavity[J].International Journal of Systematic and Evolutionary Microbiology,2007,57(4):827-831.

    • [27] SANTOS J C D,LOPES D R G,DA SILVA J D,et al.Diversity of sulfate-reducing prokaryotes in petroleum production water and oil samples[J].International Biodeterioration & Biodegradation,2020,151:104966.

    • [28] WANG S J,WANG X.Bioremediation of petroleum contaminated soils collected all around China:the extensive application and the microbial mechanism[J].Petroleum Science and Technology,2018,36(13):974-980.

    • [29] MSADDAK A,MARS M,QUINONES M A,et al.Lupin,a unique legume that is nodulated by multiple microsymbionts:the role of horizontal gene transfer[J].International Journal of Molecular Sciences,2023,24(7):6496.

    • [30] PRADEL N,FARDEAU M,BUNK B,et al.Aminithiophilus ramosus gen nov,sp nov,a sulphur-reducing bacterium isolated from a pyrite-forming enrichment culture,and taxonomic revision of the family Synergistaceae[J].International Journal of Systematic and Evolutionary Microbiology,2023,73(2):005691.

    • [31] JIN J N,SHI Y H,ZHANG B Z,et al.Biotransformation of benzo[a]pyrene by Pannonibacter sp JPA3 and the degradation mechanism through the initially oxidized benzo[a]pyrene-4,5-dihydrodiol to downstream metabolites[J].Royal Society of Chemistry,2023,13(27):18878-18887.

    • [32] ZHOU L,WU J,JI J H,et al.Characteristics of microbiota,core sulfate-reducing taxa and corrosion rates in production water from five petroleum reservoirs in China[J].Science of the Total Environment,2023,858:159861.

    • [33] FARKAS M,TANCSICS A,KRISZT B,et al.Zoogloea oleivorans sp nov,a floc-forming,petroleum hydrocarbon-degrading bacterium isolated from biofilm[J].International Journal of Systematic and Evolutionary Microbiology,2015,65(Pt1):274-279.

    • [34] OJEDA-MORALES M E,DOMINGUEZ-DOMINGUEZ M,HERNANDEZ-RIVERA M A,et al.Biosurfactant production by strains of Azospirillum isolated from petroleum-contaminated sites[J].Water Air and Soil Pollution,2015,226(12):401.

    • [35] GAO P K,TIAN H M,LI G Q,et al.Microbial diversity and abundance in the Xinjiang Luliang long-term water-flooding petroleum reservoir[J].Microbiologyopen,2015,4(2):332-342.

    • [36] LUO S W,ZHEN Z,TENG T T,et al.New mechanisms of biochar-assisted vermicomposting by recognizing different active di-(2-ethylhexyl)phthalate(DEHP)degraders across pedosphere,charosphere and intestinal sphere[J].Journal of Hazardous Materials,2023,458:131990.

    • [37] ZHU N,WANG J,WANG Y,et al.Differences in geological conditions have reshaped the structure and diversity of microbial communities in oily soils[J].Environmental Pollution,2022,306:119404.

    • [38] NALVOTHULA R,CHALLA S,PEDDIREDDY V,et al.Isolation,molecular identification and amino acid profiling of single-cell-protein-producing phototrophic bacteria isolated from oil-contaminated soil samples[J].Molecules,2022,27(19):6265.

    • [39] CHEN W M,WANG F,ZENG L,et al.Bioremediation of petroleum-contaminated soil by semi-aerobic aged refuse biofilter:optimization and mechanism[J].Journal of Cleaner Production,2021,294:125354.

    • [40] WAN Y Y,MU H M,LUO N,et al.Rapid accuracy determining DNA purity and concentration in heavy oils by spectrophotometry methods[J].Petroleum Science,2023,20(6):3394-3399.

    • [41] 万云洋,董海良.油气田微生物学实验研究方法[M].北京:石油工业出版社,2023:208-212.

  • 参考文献

    • [1] 穆红梅,万云洋.稠油藏不同开发方式地层水微生物群落功能多样性[J].生物资源,2018,40(2):120-129.MU Hongmei,WAN Yunyang.Functional diversity on microbial communities in formation water with different exploitation methods in heavy oil reservoirs[J].Biotic Resources,2018,40(2):120-129.

    • [2] 田燕,万云洋,穆红梅,等.中国不同油藏微生物多样性研究:第六届全国微生物资源学术暨国家微生物资源平台运行服务研讨会[C].厦门:中国微生物学会微生物资源专业委员会,2014:12-14.

    • [3] MARK P,LISA K,HUBERT M,et al.Oil reservoirs,an exceptional habitat for microorganisms[J].New Biotechnology,2019,49:1-9.

    • [4] TIAN Y,WAN Y Y,MU H M,et al.Microbial diversity in high-temperature heavy oil reservoirs[J].Geomicrobiology Journal,2020,37(1):59-66.

    • [5] 田燕,万云洋,孙午阳,等.高效石油降解菌的筛选及稳定性[J].中国石油大学学报(自然科学版),2018,42(5):126-134.TIAN Yan,WAN Yunyang,SUN Wuyang,et al.Screening and stability of high efficiency oil-degradation microorganisms[J].Journal of China University of Petroleum(Edition of Natural Science),2018,42(5):126-134.

    • [6] WAN Y Y,LUO N,LIU X L,et al.Cupidesulfovibrio liaohensis gen nov,sp nov,a novel sulphate-reducing bacterium isolated from an oil reservoir and reclassification of Desulfovibrio oxamicus and Desulfovibrio termitidis as Cupidesulfovibrio oxamicus comb nov and Cupidesulfovibrio termitidis comb nov[J].International Journal of Systematic and Evolutionary Microbiology,2021,71(2):004618.

    • [7] 熊驷骏,万云洋,穆红梅,等.基于自主核酸提取方法分析单油井采出液微生物[J].油气田环境保护,2022,32(2):16-22.XIONG Sijun,WAN Yunyang,MU Hongmei,et al.Analyses of oil-water microorganisms in an exploiting single well based on home-made DNA extraction method[J].Environmental Protection of Oil & Gas Fields,2022,32(2):16-22.

    • [8] ZHANG F,SHE Y,CHAI L,et al.Microbial diversity in long-term water-flooded oil reservoirs with different in situ temperatures in China[J].Scientific Reports,2012,2(1):1-10.

    • [9] MU H M,WAN Y Y,WU B C,et al.A rapid change in microbial communities of the shale gas drilling fluid from 3548 m depth to the above-ground storage tank[J].Science of the Total Environment,2021,784:147009.

    • [10] KAEBERLEIN T,LEWIS K,EPSTEIN S S.Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment[J].Science,2002,296(5570):1127-1129.

    • [11] 万云洋,董海良.环境地质微生物学实验指导[M].北京:石油工业出版社,2014:185-187.

    • [12] 董海良,蒋宏忱.地质微生物学[M].北京:高等教育出版社,2023:81-89.

    • [13] 万云洋,洪宁,顾雪莹,等.油藏采出液总脱氧核糖核酸提取方法的比较:中国化学会第29届学术年会[C].北京:中国化学会,2014:1.

    • [14] WANG L Y,KE W J,SUN X B,et al.Comparison of bacterial community in aqueous and oil phases of water-flooded petroleum reservoirs using pyrosequencing and clone library approaches[J].Applied Microbiology and Biotechnology,2014,98(9):4209-4221.

    • [15] 万云洋,穆红梅,洪宁,等.提取原油总脱氧核糖核酸的方法及试剂盒:ZL 201710116846.5[P].2019-08-13.

    • [16] 万云洋,穆红梅,熊驷骏,等.提取稠油基因组脱氧核糖核酸的方法及试剂盒和应用:ZL 201980096695.9[P].2024-01-19.

    • [17] GUO F,ZHANG T.Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing[J].Applied Microbiology and Biotechnology,2013,97(10):4607-4616.

    • [18] EMAUS M N,VARONA M,EITZMANN D R,et al.Nucleic acid extraction:fundamentals of sample preparation methodologies,current advancements,and future endeavors[J].Trac Trends in Analytical Chemistry,2020,130:115985.

    • [19] NAEGELE K,WEISSBACH F H,LEUZINGER K,et al.Impact of nucleic acid extraction procedures on human papillomavirus(HPV)detection and genotyping[J].Journal of Medical Virology,2023,95(2):e28583.

    • [20] KLINDWORTH A,PRUESSE E,SCHWEER T,et al.Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies[J].Nucleic Acids Research,2013,41(1):e1.

    • [21] LIU Y,XU P P,YANG F Z,et al.Composition and diversity of endophytic bacterial community in seeds of super hybrid rice 'Shenliangyou 5814'(Oryza sativa L.)and its parental lines[J].Plant Growth Regulation,2019,87(2):257-266.

    • [22] 穆红梅.中国典型稠油藏微生物生物量和硫循环功能研究[D].北京:中国石油大学(北京),2019.MU Hongmei.Study on microbial biomass and sulfur cycle function in typical heavy oil reservoirs in China[D].Beijing:China University of Petroleum(Beijing),2019.

    • [23] SILVA T R,VERDE L C L,NETO E V S,et al.Diversity analyses of microbial communities in petroleum samples from Brazilian oil fields[J].International Biodeterioration & Biodegradation,2013,81:57-70.

    • [24] BASIM Y,MOHEBALI G,JORFI S,et al.Bacterial strains diversity in contaminated soils and their potential for bioremediation of total petroleum hydrocarbons in south west of Iran[J].Journal of Environmental Health Science and Engineering,2022,20(2):601-608.

    • [25] LAVERNTYEVA E,ERDYNEEVA E B,BANZARAKTSAEVA T G,et al.Prokaryotic diversity in the biotopes of the gudzhirganskoe saline lake(barguzin valley,Russia)[J].Microbiology,2020,89(3):359-368.

    • [26] KODAMA Y,HA L T,WATANABE K.Sulfurospirillum cavolei sp nov,a facultatively anaerobic sulfur-reducing bacterium isolated from an underground crude oil storage cavity[J].International Journal of Systematic and Evolutionary Microbiology,2007,57(4):827-831.

    • [27] SANTOS J C D,LOPES D R G,DA SILVA J D,et al.Diversity of sulfate-reducing prokaryotes in petroleum production water and oil samples[J].International Biodeterioration & Biodegradation,2020,151:104966.

    • [28] WANG S J,WANG X.Bioremediation of petroleum contaminated soils collected all around China:the extensive application and the microbial mechanism[J].Petroleum Science and Technology,2018,36(13):974-980.

    • [29] MSADDAK A,MARS M,QUINONES M A,et al.Lupin,a unique legume that is nodulated by multiple microsymbionts:the role of horizontal gene transfer[J].International Journal of Molecular Sciences,2023,24(7):6496.

    • [30] PRADEL N,FARDEAU M,BUNK B,et al.Aminithiophilus ramosus gen nov,sp nov,a sulphur-reducing bacterium isolated from a pyrite-forming enrichment culture,and taxonomic revision of the family Synergistaceae[J].International Journal of Systematic and Evolutionary Microbiology,2023,73(2):005691.

    • [31] JIN J N,SHI Y H,ZHANG B Z,et al.Biotransformation of benzo[a]pyrene by Pannonibacter sp JPA3 and the degradation mechanism through the initially oxidized benzo[a]pyrene-4,5-dihydrodiol to downstream metabolites[J].Royal Society of Chemistry,2023,13(27):18878-18887.

    • [32] ZHOU L,WU J,JI J H,et al.Characteristics of microbiota,core sulfate-reducing taxa and corrosion rates in production water from five petroleum reservoirs in China[J].Science of the Total Environment,2023,858:159861.

    • [33] FARKAS M,TANCSICS A,KRISZT B,et al.Zoogloea oleivorans sp nov,a floc-forming,petroleum hydrocarbon-degrading bacterium isolated from biofilm[J].International Journal of Systematic and Evolutionary Microbiology,2015,65(Pt1):274-279.

    • [34] OJEDA-MORALES M E,DOMINGUEZ-DOMINGUEZ M,HERNANDEZ-RIVERA M A,et al.Biosurfactant production by strains of Azospirillum isolated from petroleum-contaminated sites[J].Water Air and Soil Pollution,2015,226(12):401.

    • [35] GAO P K,TIAN H M,LI G Q,et al.Microbial diversity and abundance in the Xinjiang Luliang long-term water-flooding petroleum reservoir[J].Microbiologyopen,2015,4(2):332-342.

    • [36] LUO S W,ZHEN Z,TENG T T,et al.New mechanisms of biochar-assisted vermicomposting by recognizing different active di-(2-ethylhexyl)phthalate(DEHP)degraders across pedosphere,charosphere and intestinal sphere[J].Journal of Hazardous Materials,2023,458:131990.

    • [37] ZHU N,WANG J,WANG Y,et al.Differences in geological conditions have reshaped the structure and diversity of microbial communities in oily soils[J].Environmental Pollution,2022,306:119404.

    • [38] NALVOTHULA R,CHALLA S,PEDDIREDDY V,et al.Isolation,molecular identification and amino acid profiling of single-cell-protein-producing phototrophic bacteria isolated from oil-contaminated soil samples[J].Molecules,2022,27(19):6265.

    • [39] CHEN W M,WANG F,ZENG L,et al.Bioremediation of petroleum-contaminated soil by semi-aerobic aged refuse biofilter:optimization and mechanism[J].Journal of Cleaner Production,2021,294:125354.

    • [40] WAN Y Y,MU H M,LUO N,et al.Rapid accuracy determining DNA purity and concentration in heavy oils by spectrophotometry methods[J].Petroleum Science,2023,20(6):3394-3399.

    • [41] 万云洋,董海良.油气田微生物学实验研究方法[M].北京:石油工业出版社,2023:208-212.