en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张旭(1992-),男,讲师,博士,研究方向为增强型地热系统压裂和开采。E-mail: zhangxu@cugb.edu.cn。

通信作者:

黄中伟(1972-),男,教授,博士,博士生导师,研究方向为油气井流体力学、钻完井及压裂增产技术。E-mail: huangzw@cup.edu.cn。

中图分类号:TK 521

文献标识码:A

文章编号:1673-5005(2025)04-0086-09

DOI:10.3969/j.issn.1673-5005.2025.04.009

参考文献 1
巩亮,韩东旭,陈峥,等.增强型地热系统关键技术研究现状及发展趋势[J].天然气工业,2022,42(7):135-159.GONG Liang,HAN Dongxu,CHEN Zheng,et al.Research status and development trend of key technologies for an enhanced geothermal system[J].Natural Gas Industry,2022,42(7):135-159.
参考文献 2
ZHANG X,HUANG Z,LEI Q,et al.Impact of fracture shear dilation on long-term heat extraction in enhanced geothermal systems:insights from a fully-coupled thermo-hydro-mechanical simulation[J].Geothermics,2021,96:102216.
参考文献 3
ZHANG X,HUANG Z,LEI Q,et al.Improving heat extraction performance of enhanced geothermal systems:insights from critical fracture network parameter and multi-objective optimization method [J].Applied Thermal Engineering,2022,213:118671.
参考文献 4
ZHANG X,JIA C,YAO J,et al.An evaluation framework for production performance of high-temperature fractured andkarstified geothermal reservoirs:production mechanism,sensitivity study,and key parameters ranking[J].Gondwana Research,2023,122:279-305.
参考文献 5
LI Q,YIN T,LI X,et al.Effects of rapid cooling treatment on heated sandstone:a comparison between water and liquid nitrogen cooling[J].Bulletin of Engineering Geology and the Environment,2020,79:313-327.
参考文献 6
ZHU Z,RANJITH P G,TIAN H,et al.Relationships between P-wave velocity and mechanical properties of granite after exposure to different cyclic heating andwater cooling treatments[J].Renewable Energy,2021,168:375-392.
参考文献 7
WU Q,WENG L,ZHAO Y,et al.On the tensile mechanical characteristics of fine-grained granite after heating/cooling treatments with different cooling rates[J].Engineering Geology,2019,253:94-110.
参考文献 8
梁铭,张绍和,舒彪.不同冷却方式对高温花岗岩巴西劈裂特性的影响[J].水资源与水工程学报,2018,29(2):186-193.LIANG Ming,ZHANG Shaohe,SHU Biao.Effect of different cooling ways on Brazilian tension characteristics of heat—treated granite[J].Journal of Water Resources & Water Engineering,2018,29(2):186-193.
参考文献 9
余莉,彭海旺,李国伟,等.花岗岩高温-水冷循环作用下的试验研究[J].岩土力学,2021,42(4):1025-1035.YU Li,PENG Haiwang,LI Guowei,et al.Experimental study on granite under high temperature-water cooling cycle[J].Rock and Soil Mechanics,2021,42(4):1025-1035.
参考文献 10
崔翰博,唐巨鹏,姜昕彤.自然冷却和遇水冷却后高温花岗岩力-声特性试验研究[J].固体力学学报,2019,40(6):571-582.CUI Hanbo,TANG Juepeng,JIANG Xintong.Experimental study on the mechanical-acoustic characteristics of high-temperature granite after natural cooling and water cooling[J].Chinese Journal of Solid Mechanics,2019,40(6):571-582.
参考文献 11
谢紫霄,黄中伟,熊建华,等.天然裂缝对干热岩水力压裂裂缝扩展的影响规律[J].天然气工业,2022,42(4):63-72.XIE Zixiao,HUANG Zhongwei,XIONG Jianhua,et al.Influence of natural fractures on the propagation of hydraulic fractures in hot dry rock[J].Natural Gas Industry,2022,42(4):63-72.
参考文献 12
ZHANG S,HUANG Z,HUANG P,et al.Numerical and experimental analysis of hot dry rock fracturing stimulation with high-pressure abrasive liquid nitrogen jet[J].Journal of Petroleum Science and Engineering,2018,163:156-165.
参考文献 13
LIU Y,XU T,YUAN Y,et al.A laboratory study on fracture initiation and propagation of granite under cyclic-injection hydraulic frac-turing[J].Journal of Petroleum Science and Engineering,2022,212:110278.
参考文献 14
KUMARI W G P,RANJITH P G,PERERA M S A,et al.Hydraulic fracturing under high temperature and pressure conditions with micro CT applications:geothermal energy from hot dry rocks[J].Fuel,2018,230:138-154.
参考文献 15
CHENG Y,ZHANG Y,YU Z,et al.Investigation on reservoir stimulation characteristics in hot dry rock geothermal formations of China during hydraulic fracturing[J].Rock Mechanics and Rock Engineering,2021,54(8):3817-3845.
参考文献 16
齐宁,甘俊冲,章泽辉,等.径向井辅助前置液酸压裂缝扩展数值模拟[J].中国石油大学学报(自然科学版),2024,48(3):101-110.QI Ning,GAN Junchong,ZHANG Zehui,et al.Numerical simulation of fracture propagation guided by radial well assisted preflush acid fracturing[J].Journal of China University of Petroleum(Edition of Natural Science),2024,48(3):101-110.
参考文献 17
王继伟,曲占庆,郭天魁,等.基于CDEM的页岩甲烷原位燃爆压裂数值模拟[J].中国石油大学学报(自然科学版),2023,47(1):106-115.WANG Jiwei,QU Zhanqing,GUO Tiankui,et al.Numerical simulation on fracture propagation of methane in-situ explosion fracturing in shale gas reservoirs[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(1):106-115.
参考文献 18
GUO T,TANG S,LIU S,et al.Numerical simulation of hydraulic fracturing of hot dry rock under thermal stress[J].Engineering Fracture Mechanics,2020,240:107350.
参考文献 19
ZHANG W,GUO T,QU Z,et al.Research of fracture initiation and propagation in HDR fracturing under thermal stress from meso-damage perspective[J].Energy,2019,178:508-521.
参考文献 20
ZHANG W,WANG C,GUO T,et al.Study on the cracking mechanism of hydraulic and supercritical CO2 fracturing in hot dry rock under thermal stress[J].Energy,2021,221:119886.
参考文献 21
王伟,付豪,邢林啸,等.基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为[J].地球科学,2021,46(10):3509-3519.WANG Wei,FU Hao,XING Linxiao,et al.Crack propagation behavior of carbonatite geothermal reservoir rock mass based on extended finite element [J].Method Earth Science,2021,46(10):3509-3519.
参考文献 22
ZHOU Z,JIN Y,ZENG Y,et al.Investigation on fracture creation in hot dry rock geothermal formations of China during hydraulic fracturing[J].Renewable Energy,2020,153:301-313.
参考文献 23
ZHAO C,ZHANG Z,WANG S,et al.Effects of fracture network distribution on excavation-induced coupled responses of pore pressure perturbation and rock mass deformation[J].Computers and Geotechnics,2022,145:104670.
参考文献 24
AKDAS S B,ONUR M.Analytical solutions for predicting and optimizing geothermal energy extraction from an enhanced geothermal system with a multiple hydraulically fractured horizontal-well doublet[J].Renewable Energy,2022,181:567-580.
参考文献 25
SALIMZADEH S,PALUSZNY A,NICK H M,et al.A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems[J].Geothermics,2018,71:212-224.
参考文献 26
JIRÁSEK M,BAUER M.Numerical aspects of the crack band approach[J].Computers & Structures,2012,110:60-78.
参考文献 27
TANG C A,LIANG Z Z,ZHANG Y B,et al.Fracture spacing in layered materials:a new explanation based on two-dimensional failure process modeling[J].American Journal of Science,2008,308(1):49-72.
参考文献 28
WEI C H,ZHU W C,YU Q L,et al.Numerical simulation of excavation damaged zone under coupled thermal-mechanical conditions with varying mechanical parameters[J].International Journal of Rock Mechanics and Mining Sciences,2015,75:169-181.
参考文献 29
MOORE J,MCLENNAN J,ALLIS R,et al.The utah frontier observatory for research in geothermal energy(FORGE):an international laboratory for enhanced geothermal system technology development:44th Workshop on Geothermal Reservoir Engineering[C].Stanford,California:Stanford University,2019.
参考文献 30
GHASSEMI A,ZHANG Q.A transient fictitious stress boundary element method forporothermoelastic media[J].Engineering Analysis with Boundary Elements,2004,28:1363-1373.
参考文献 31
DETOURNAY E.Propagation regimes of fluid-driven fractures in impermeable rocks[J].International Journal of Geomechanics,2004,4:35-45.
目录contents

    摘要

    水力压裂是有效开发干热岩的关键途径,核心步骤是向高温高应力地层中注入低温高压流体,冷冲击诱导热应力对干热岩裂缝起裂和扩展具有重要影响,但低温诱导热应力和地应力耦合作用下高温岩体应力场/温度场演化特征及裂缝扩展模式仍不明晰。为此,建立考虑井筒应力叠加效应、岩石热孔隙弹性效应、弹脆性破坏准则和基岩孔渗随损伤变化的热流固-损伤耦合裂缝扩展数值模型,并与井筒冷却和裂缝扩展解析解对比,验证模型的准确性。研究不同热储地应力和流体注入温度下干热岩压裂应力场/温度场演化特征和裂缝扩展模式。结果表明:裂缝起裂时,井筒周围热应力作用较强,裂缝沿各方向扩展,裂缝起裂后,裂缝扩展受原地应力场影响增强,使裂缝转向,主要沿最大主应力方向扩展,温度变化局限在井筒附近地层;温差越大,热应力越强,起裂压力越低,利于形成复杂缝网;地应力差越小(最大主应力恒定),裂缝起裂/扩展方向受地应力控制程度小,利于形成复杂缝网,应力场扰动程度大。

    Abstract

    Hydraulic fracturing serves as a critical pathway for the efficient development of dry hot rock resources, and its core process involves the injection of low-temperature and high-pressure fluids into high-temperature, high-stress rock formations, in which cold shock-induced thermal stress can play a vital role in fracture initiation and propagation within the hot dry rock. However, the evolution characteristics of stress/temperature and fracture propagation patterns in high-temperature rock matrix under coupled thermo-stress interactions remain unclear. In this study, a thermo-hydro-mechanical-damage coupled fracture propagation model was established, incorporating wellbore stress superposition effects, rock thermo-poroelastic responses, elastic-brittle failure criteria and permeability-porosity variations with matrix damage. The model's accuracy was validated through comparisons with the results of analytical solutions for wellbore cooling and fracture propagation. Numerical simulations under varying geothermal stress conditions and fluid injection temperature reveal that, during fracture initiation, strong thermal stresses near the wellbore can promote multi-directional fracture extension, while the subsequent propagation becomes increasingly dominated by in-situ stress distribution, causing fracture reorientation towards the maximum principal stress direction, while the variation of temperature is localized near the wellbore region. Larger temperature differentials can enhance thermal stresses, reduce initiation pressures and facilitate the development of complex fracture networks. Smaller in-situ stress differentials (under constant maximum principal stress) can weaken the control of fracture initiation/propagation directions by stress field, promoting the formation of complex fracture networks while inducing greater stress perturbations.

  • 干热岩(hot dry rock,HDR)地热资源储量大、分布广,是一种极具潜力的可再生清洁能源。增强型地热系统(enhanced geothermal system,EGS)通过水力压裂建立人工热储,实现高效取热[1-4]。然而,干热岩储层具有高温、高应力、高强度等特点,如何高效造储是开发利用的关键难题。针对高温岩石的热物理特性,国内外学者通过试验与数值模拟研究流体温度对岩石力学行为的影响。研究表明,热应力是导致高温岩石微裂纹的主要原因,且与温差正相关[5-7]。水冷条件下,高温岩石的微裂纹数量显著增加,并形成微裂缝网络[8-9]。高温花岗岩的热损伤主要源于热应力在岩石表面的拉张作用[10-11]。干热岩水力压裂的关键在于冷流体与高温储层的相互作用,导致井筒周围岩石快速冷却并产生热应力,从而诱发热破裂[12-13]。Kumari等[14]试验表明,花岗岩起裂压力随温度升高而下降。Cheng等[15]研究了温度与排量对裂缝扩展的影响,发现其显著影响破裂压力和裂缝形态。由于实验室条件下的干热岩水力压裂应力和温度限制,直接试验方法无法完全模拟地下储层条件。因此数值模拟成为了一种重要的研究手段[16-17]。Guo等[18]研究岩石非均质性、力学参数及排量对裂缝扩展的影响,发现井筒处较大的温差可诱发显著热应力,促进岩石起裂。Zhang等[19-20]构建裂缝扩展模型,分析裂缝演变规律,并探讨超临界CO2作为压裂液时的开裂机制。王伟等[21]基于单天然裂缝-热流固耦合模型,指出较小的水平应力差有利于天然裂缝的开启。Zhou等[22]研究发现,水力裂缝扩展主要受地应力控制。尽管已有大量研究,但低温诱导热应力与地应力耦合作用下的岩体应力场、温度场演化及裂缝扩展模式仍不清晰。为此,笔者建立考虑井筒应力叠加效应、岩石热孔隙弹性效应、弹脆性破坏准则及孔渗随损伤变化的热流固-损伤耦合裂缝扩展数值模型。通过与井筒冷却及裂缝扩展解析解对比,验证模型准确性,并研究不同地应力和流体温度条件下的应力场、温度场演化及裂缝扩展模式。

  • 1 数值模型

  • 为深入理解干热岩储层的水力压裂过程,建立干热岩储层热流固-损伤耦合裂缝扩展数值模型(图1)。该模型综合考虑了井筒应力叠加效应、岩石热孔隙弹性效应、弹脆性破坏准则,以及基岩孔渗随着损伤的演化过程。利用该模型可以有效地表征水力压裂过程中地热储层的压力变化、温度变化、应力扰动以及裂缝扩展的时空演化特性。模型的核心部分包括:①流体流动,模型描述了地热储层中流体的流动行为,考虑了流体在生成裂缝中的迁移以及在岩石孔隙中的流动;②热量传递,传热部分涉及热能在地热储层中的传递,包括热传导和对流两种机制,不考虑温度引起的体积应变和流压变化;③岩石形变和损伤,此部分涉及岩石在受力和流动传热影响下的形变行为,以及因应力、压力和温度变化导致的损伤和破裂。

  • 图1 热流固-损伤耦合关系

  • Fig.1 Thermal-hydraulic-mechanical-damage coupling

  • 1.1 热流固-损伤耦合模型

  • 1.1.1 渗流场方程

  • 考虑应力影响下干热岩内流体流动的质量守恒方程 [23]

  • ρfSfpt+-ρfkμfp+ρfαBεVt=-Qf.
    (1)
  • 其中

  • Sf=φrχf+αB-φr1-αBKd.

  • 式中,ρf,为流体密度,kg/m3Sf为储水系数,Pa-1k为岩石渗透率,m2μf为注入流体黏度,mPa·s;εv为体积应变;Qf为源/汇项;φr为岩石孔隙度; χf为流体压缩系数,Pa-1Kd为排水体积模量,Pa; αB为Biot系数。

  • 1.1.2 温度场方程

  • 考虑热对流和热传导作用下干热岩内热量传递的能量守恒方程[24]

  • φrρfCf+1-φrρrCrTt+ρfCfuT-φrλf+1-φrλrT=W.
    (2)
  • 式中,CrCf分别为岩石和流体的比热容,J/(kg·K);λrλf分别为岩石和流体的导热率,W/(m·K);W为冷流体与热岩石之间的热交换,W/m3u为岩石位移,m。

  • 1.1.3 应力与损伤场方程

  • 考虑热应力和孔隙弹性效应,表征干热岩应力平衡方程 [25]

  • G2ui+(λ+G)uj,ji-αBp-αTKTs,i+Fi=0.
    (3)
  • 式中,GK分别为剪切和体积模量,Pa;λ为lame常数;αT为热膨胀系数,1/K;p为孔隙压力,Pa;Ts,i为实时温度和初始温度之差,K;Fi为单位体积力,Pa。

  • 采用各向同性损伤模型描述岩石材料破坏过程的加载和卸载条件下的破坏行为。模型的关键方程和定义[26]

  • f(ε~,k)0,k0,kf(ε~,k)=0.
    (4)
  • 式中,ε~为等效应变;k为内部变量,用于记录等效应变的最大水平应变。

  • 等效拉伸应变和压缩应变是基于光滑朗肯准则定义的[26],表达式为

  • εt=--DεE,εc=-D:εE.
    (5)
  • 式中,D为刚度矩阵;ε为应变; ‖·‖为范数算子;〈·〉为正部分的麦考利括号;E为弹性模量。进而推导出表征拉伸和压缩损伤的参数,分别表示为ωtωc[27]

  • ωt=0,ktεt0,1-ftrEkt,kt<εt0;ωc=0,kcεc0,1-fcrEkc,kc<εc0.
    (6)
  • 式中,εt0=-ft0 / Eεc0=-fc0 / E分别为极限弹性拉伸和压缩应变;ft0fc0分别为拉伸强度和压缩强度;ftr = ηft0fcr = ηfc0分别为残余抗拉强度和抗压强度;η为残余强度比;ktkc分别为拉伸和压缩条件的内部变量。

  • 基于细观损伤力学,损伤后岩石力学性能发生劣化。损伤后弹性模量表达式[28]

  • E=E0(1-ω).
    (7)
  • 另外,储层岩石的孔隙度和渗透率会随着岩石破裂而增大,表达式 [22]

  • φr=φr0-φreexp-αφσeff¯+φre.
    (8)
  • 式中,φr0φre分别为初始孔隙度和残余孔隙度;αφ为孔隙度影响系数,1/Pa,本研究中为5×10-8 [21]σeff¯为平均有效应力,Pa。

  • k=k0φrφr03expαkω.
    (9)
  • 式中,αk为岩石渗透率随损伤演化的系数,本研究中为5[21]

  • 基于有限元数值模拟软件COMSOL Multiphysics对全耦合热流固-损伤(THM-D)模型进行数值求解,采用非结构化网格进行空间离散,平均单元尺寸为1.5 mm,即模型特征长度为L/200。基于隐式广义α方法计算压力、温度、应力及损伤随时间演化过程。通过隐式求解器控制模型计算时间步长,最大时间步长Δtmax= 0.1 s,相对容差设置为0.01,保证数值计算的收敛性和稳定性。对于每个时间步长,当计算误差低于设定的相对容差时,则数值计算满足收敛性。另外设置求解器最大迭代次数为40次。在一个时间步内模型计算不收敛时,计算时间步长减半,如果计算误差继续超过容差限制,则进一步减小时间步长,直至满足收敛性条件。此外,采用较短的初始时间步长(即Δtini=1×10-2 s)进行计算,利于模型收敛。通过模拟冷流体注入高温储层的井筒冷却,对比分析岩石温度、孔隙压力和应力状态的变化,验证了THM耦合模型。与黏度控制下的裂缝扩展解析解进行对比,验证了水力压裂裂缝扩展数值模型的准确性。

  • 1.2 模型建立

  • 图2(a)为干热岩水力压裂几何模型(水平面),模拟的是竖直井中的压裂过程。该模型的井筒半径为15 mm,模型尺寸为0.3 m×0.3 m。基于美国干热岩FORGE项目场地的真实储层数据开展模拟。 FORGE 干热岩储层的温度范围175~225℃,最小水平主应力(σh)为13.1~14.2 kPa/m,最大水平主应力(σH)为15.4~18.5 kPa/m[29]。FORGE项目以3000 m深的储层为目标,估算其最大、最小水平主应力分别为52和42 MPa,初始温度均为200℃。应力以正交方式施加,底部有一个滚轮约束以防止y方向的位移,如图2(a)所示。模型的初始孔隙水压保持在25 MPa,外边界设置为无流动和隔热条件。压裂过程中,注入流体初始温度为20℃,以qinj=0.02 kg/(m2·s)的恒定流量注入,直到裂缝扩展到储层边界。本文中重点研究不同地应力差(σH-σh=0、10、26 MPa,其中σH保持恒定)和流体注入温度(Tinj=20、100、200℃)条件下干热岩水力压裂裂缝起裂与扩展特征。

  • 为了确保模拟结果的准确性,进行网格无关性分析,比较不同网格数量下水力压裂裂缝的形态和流体压力。结果显示,当模型的最大网格尺寸为0.005 m(最大和最小网格尺寸相等),且网格数量达到150000时,模拟结果趋于一致。因此为了平衡计算的精度与效率,选择150000个有限元网格进行模型的网格划分和计算(图2(b)为模型的有限元网格划分,遵循Delaunay分布)。

  • 图2 干热岩压裂模型

  • Fig.2 Hot dry rock hydraulic fracturing model

  • 模型采用的初始条件、热储和取热工质物性参数如下:储层温度设定为 200℃、孔隙压力为25 MPa、注入流量为0.02 kg/s、注入温度为20℃、最大水平主应力为52 MPa、最小水平主应力为42 MPa;干热岩密度为2650 kg/m3、抗压强度为200 MPa、抗拉强度为20 MPa、弹性模量为60 GPa、泊松比为0.25、导热系数为3 W/(m·℃)、比定压热容为1000 J/(kg·℃)、孔隙度为1%、渗透率为1×10-18 m2、热膨胀系数为2×10-6-1;注入流体密度为1000 kg/m3、导热系数为0.5 W/(m·℃)、比定压热容为4200 J/(kg·℃)、黏度为1 mPa·s。

  • 2 模型验证

  • 2.1 热流固耦合模型验证

  • 通过模拟热储井筒温度下降引起的岩石温度、孔隙压力和应力状态随时间变化情况,验证热流固耦合模型的准确性。图3为模型设置、初始条件和边界条件示意图。参考Ghassemi等[30]相关研究,本文中采用相同的模型设置进行井筒冷却模拟。模拟中,无限大地层井筒直径为0.1 m,初始温度和孔隙压力分别为200℃和0 MPa。在模拟过程中,井筒温度突然冷却至80℃,而孔隙压力维持在0 MPa。井筒边界设定为自由边界,而模型的外部应力、孔隙压力和温度边界条件设定为σx =σy=p=0 MPa和T=200℃。图4为不同时刻下(即 t为103、104、105、106 s)岩石温度、孔隙压力、切向应力和径向应力沿井筒法向方向的变化。结果表明数值解与解析解基本一致,进而验证建立的热流固耦合模型及数值求解方法的准确性。

  • 图3 模型验证示意图

  • Fig.3 Diagram of model validation

  • 图4 基于解析解和数值解的热流固耦合结果对比

  • Fig.4 Comparison of thermo-hydro-mechanical coupling results between analytical solution and numerical solution

  • 2.2 水力压裂裂缝扩展模型验证

  • 通过对比裂缝半长随时间变化的数值解和解析解(即黏度状态控制的水力裂缝扩展模型,KGD模型),验证流体注入诱导裂缝扩展数值模型的准确性。图5(a)为模型设置、初始条件和边界条件示意图。Detournay[31]得出了水力压裂裂缝半长的一阶近似解,采用与Detournay[31]相同的模型设置进行裂缝扩展模拟。建立了100 m×100 m的平面应变模型,其中最大水平应力设为90 MPa,最小水平应力为45 MPa,孔隙压力为30 MPa,弹性模量为60 GPa,泊松比为0.25,抗拉强度为10 MPa,流体黏度为10 mPa·s,水基压裂液以2×10-4 m/s的速度持续注入。流体注入诱导裂缝扩展数值解与解析解对比结果见图5(b),展示了水力压裂裂缝半长随时间变化情况。结果表明,数值解与解析解吻合较好,验证了流体注入诱导裂缝扩展模型及其数值求解方法的准确性。

  • 图5 基于解析解和数值解的裂缝扩展结果对比

  • Fig.5 Comparison of crack propagation results between analytical solution and numerical solution

  • 3 干热岩水力压裂裂缝起裂与扩展结果

  • 3.1 裂缝起裂与扩展特征

  • 为厘清干热岩水力压裂过程中的裂缝起裂和扩展特征,对比分析不同时刻下(即t~= 0.1、0.8、1,采用无因次时间 t~=t/t0进行分析,其中t为压裂时间,t0为整个压裂过程所用时间)干热岩储层的损伤(裂缝)分布演化情况,如图6所示。在裂缝扩展初期(如裂缝起裂时,t~= 0.1),由于低温压裂液与高温岩石之间的温差诱导的热应力(图6(c)),井筒附近产生了较大的拉应力(图6(b)),促使岩石破裂,形成沿多个方向扩展的多条裂缝。在这一阶段,裂缝扩展主要受温差诱导热应力控制,而非地应力场控制(若为地应力场控制,裂缝应沿着最大主应力方向扩展)。在裂缝扩展中后期(裂缝起裂后,t~= 0.8和1),如图6(a)所示,随着压裂过程的进行,岩石的损伤演化明显。在t~= 0.8时,裂缝的扩展方式从最初的热应力控制阶段转变为地应力主导阶段,表现为裂缝倾向于沿最大水平主应力方向快速扩展,而垂直于该方向的扩展则较慢;在裂缝扩展后期(t~= 1),裂缝主要沿最大水平主应力方向扩展,且扩展距离最远。此外,一些非沿最大主应力方向的裂缝,随着从井筒附近向外延伸,受热应力的影响逐渐减弱,地应力逐渐成为主导,导致裂缝方向出现转变,最终沿最大水平主应力方向扩展。图6(b)显示在压裂过程中,裂缝尖端处出现了应力集中现象(拉应力较大),在增压作用下有利于裂缝沿尖端的优先扩展。裂缝的起裂与扩展导致地应力扰动和应力重新分布,形成应力重构区域。应力重构区域随裂缝扩展逐渐增大,其形态与裂缝形态相关。从图6(c)中观察到,温度变化主要集中在井筒附近,裂缝扩展过程中未出现大幅温降,主要因为岩石基质渗透性极差(10-18 m2),导致新形成裂缝内流体流速较小,温度传递主要由热传导控制,而热传导换热效率低,因此温度影响范围有限[3]。综上所述,在裂缝扩展初期,温差诱导的热应力在井筒附近起主导作用,形成多条沿不同方向扩展的裂缝;但随着裂缝的延伸,热应力的影响逐渐减弱,地应力逐渐占主导,控制裂缝主要沿最大主应力方向扩展。

  • 图6 FORGE场地条件下损伤场、应力场和温度场随压裂时间变化

  • Fig.6 Change of damage field, stress field, and temperature field with fracturing time under FORGE site conditions

  • 3.2 热应力及地应力作用下裂缝扩展模式与应力场重构特征

  • 为阐明热应力及地应力耦合作用下裂缝扩展模式与应力场重构特征,对比分析不同地应力差(σH-σh=0、10、26 MPa,其中σH保持恒定)和流体注入温度(Tinj=20、100、200℃)条件下的岩石破裂压力变化(图7)、裂缝形态和热应力分布(图8)以及应力场扰动分布(图9)。图8表明,热应力和地应力共同作用下岩石的破裂压力呈现显著变化,特别是在低温流体注入和较大地应力差的条件下,更容易促进裂缝起裂与扩展。具体表现为,注入流体温度越低(20℃)和地应力差越大(26 MPa),岩石破裂压力越小,越有利于岩石起裂。造成上述现象的原因是,冷流体与热岩石间温差越大,热应力作用产生的拉应力越大;而随着地应力差的增加,即最小水平主应力减小(在最大主应力保持恒定的情况下),使岩石破裂所需的孔隙压力降低,更有利于裂缝的起裂和扩展。

  • 图7 不同温度和地应力差下的岩石破裂压力

  • Fig.7 Rock fracture pressure under various temperatures and in-situ stress differences

  • 通过分析热应力及地应力共同作用下水力裂缝形态和应力场变化(图8和9),阐明了水力压裂裂缝扩展模式及应力重构特征。当注入流体温度越低(20℃)和地应力差越小(0 MPa),热应力影响范围及应力扰动程度越大,裂缝形态越复杂。这主要是由于系统内热应力受冷流体与热岩石之间的温度差控制,较大的温差产生较大热应力,井筒周围热破裂程度显著,造成多条裂缝沿不同方向起裂;同时地应力差越小,裂缝倾向于沿原扩展方向延伸,形成复杂的裂缝网络。针对热应力及地应力共同作用下水力裂缝形态和应力场变化具体分析如下:①对于Tinj= 20℃,冷流体的注入会与高温储层出现较大温差,进而诱导较大的热应力。地应力差为0 MPa时,井筒周围储层受热应力影响产生大量微裂缝,部分微裂缝沿着破裂方向继续扩展至边界,形成微裂缝+多主裂缝的复杂缝网,引起大范围的应力扰动,波及整个地层;地应力差为 10 MPa时,井筒周围储层受热应力和地应力的共同影响,微裂缝主要集中在最大主应力方向附近,主裂缝受地应力影响,在扩展过程中逐渐趋向最大主应力方向,应力扰动区域呈现出竖直的纺锤状;地应力差达到 26 MPa时,地应力影响占据主导地位,微裂缝几乎不发育,仅呈现出垂直于最小水平主应力的双翼主裂缝,裂缝形态单一,应力扰动区域仅在裂缝附近; ②对于Tinj= 100℃,地应力差为 0 MPa时,微裂缝数量有所减少,但最终裂缝形态仍为微裂缝+多主裂缝的复杂缝网;地应力差较大时(σH-σh= 10、26 MPa),微裂缝数量明显减少且几乎不发育,仅有垂直于最小水平主应力的主裂缝; ③对于Tinj= 200℃,注入流体与储层温度相同,不产生热应力,裂缝形态仅受地应力差影响。地应力差为0 MPa时,流体压力使储层破裂,产生几条水力裂缝;当地应力差较大时(σH-σh=10、26 MPa),储层仅呈现出垂直于最小水平主应力的双翼裂缝,裂缝形态单一。综上,温差诱导热应力越大,地应力差越小,有利于形成复杂缝网,应力扰动区域越大;热应力越小,地应力差越大,更加容易形成简单裂缝,应力扰动区域局限在裂缝附近。

  • 图8 不同温度和地应力差下干热岩水力压裂裂缝形态及热应力分布

  • Fig.8 Fracture morphology and thermal stress distribution in hot dry rock after hydraulic fracturing under various temperatures and in-situ stress differences

  • 图9 不同温度和地应力差下干热岩水力压裂应力扰动

  • Fig.9 Stress perturbation in hot dry rock after hydraulic fracturing under different temperatures and in-situ stress differences

  • 4 结论

  • (1)裂缝扩展下地应力场和温度场的重构特征:裂缝扩展初期,井筒周围温差诱导热应力作用显著,促使岩石破裂,裂缝沿不同方向扩展,该阶段裂缝起裂和扩展主要受热应力控制;随着裂缝进一步扩展,热应力影响逐渐减弱,裂缝延伸路径受原地应力场影响增强,使裂缝转向,趋向于沿最大主应力方向扩展。此外,温度变化局限在井筒附近区域。

  • (2)热应力和地应力耦合作用下裂缝扩展模式:冷流体与热储层温差越大,热应力越强,起裂压力越低,利于形成复杂缝网;地应力差越小(最大主应力保持恒定),裂缝起裂/扩展方向受地应力控制程度小,利于形成复杂缝网,并且应力场扰动程度大。

  • 参考文献

    • [1] 巩亮,韩东旭,陈峥,等.增强型地热系统关键技术研究现状及发展趋势[J].天然气工业,2022,42(7):135-159.GONG Liang,HAN Dongxu,CHEN Zheng,et al.Research status and development trend of key technologies for an enhanced geothermal system[J].Natural Gas Industry,2022,42(7):135-159.

    • [2] ZHANG X,HUANG Z,LEI Q,et al.Impact of fracture shear dilation on long-term heat extraction in enhanced geothermal systems:insights from a fully-coupled thermo-hydro-mechanical simulation[J].Geothermics,2021,96:102216.

    • [3] ZHANG X,HUANG Z,LEI Q,et al.Improving heat extraction performance of enhanced geothermal systems:insights from critical fracture network parameter and multi-objective optimization method [J].Applied Thermal Engineering,2022,213:118671.

    • [4] ZHANG X,JIA C,YAO J,et al.An evaluation framework for production performance of high-temperature fractured andkarstified geothermal reservoirs:production mechanism,sensitivity study,and key parameters ranking[J].Gondwana Research,2023,122:279-305.

    • [5] LI Q,YIN T,LI X,et al.Effects of rapid cooling treatment on heated sandstone:a comparison between water and liquid nitrogen cooling[J].Bulletin of Engineering Geology and the Environment,2020,79:313-327.

    • [6] ZHU Z,RANJITH P G,TIAN H,et al.Relationships between P-wave velocity and mechanical properties of granite after exposure to different cyclic heating andwater cooling treatments[J].Renewable Energy,2021,168:375-392.

    • [7] WU Q,WENG L,ZHAO Y,et al.On the tensile mechanical characteristics of fine-grained granite after heating/cooling treatments with different cooling rates[J].Engineering Geology,2019,253:94-110.

    • [8] 梁铭,张绍和,舒彪.不同冷却方式对高温花岗岩巴西劈裂特性的影响[J].水资源与水工程学报,2018,29(2):186-193.LIANG Ming,ZHANG Shaohe,SHU Biao.Effect of different cooling ways on Brazilian tension characteristics of heat—treated granite[J].Journal of Water Resources & Water Engineering,2018,29(2):186-193.

    • [9] 余莉,彭海旺,李国伟,等.花岗岩高温-水冷循环作用下的试验研究[J].岩土力学,2021,42(4):1025-1035.YU Li,PENG Haiwang,LI Guowei,et al.Experimental study on granite under high temperature-water cooling cycle[J].Rock and Soil Mechanics,2021,42(4):1025-1035.

    • [10] 崔翰博,唐巨鹏,姜昕彤.自然冷却和遇水冷却后高温花岗岩力-声特性试验研究[J].固体力学学报,2019,40(6):571-582.CUI Hanbo,TANG Juepeng,JIANG Xintong.Experimental study on the mechanical-acoustic characteristics of high-temperature granite after natural cooling and water cooling[J].Chinese Journal of Solid Mechanics,2019,40(6):571-582.

    • [11] 谢紫霄,黄中伟,熊建华,等.天然裂缝对干热岩水力压裂裂缝扩展的影响规律[J].天然气工业,2022,42(4):63-72.XIE Zixiao,HUANG Zhongwei,XIONG Jianhua,et al.Influence of natural fractures on the propagation of hydraulic fractures in hot dry rock[J].Natural Gas Industry,2022,42(4):63-72.

    • [12] ZHANG S,HUANG Z,HUANG P,et al.Numerical and experimental analysis of hot dry rock fracturing stimulation with high-pressure abrasive liquid nitrogen jet[J].Journal of Petroleum Science and Engineering,2018,163:156-165.

    • [13] LIU Y,XU T,YUAN Y,et al.A laboratory study on fracture initiation and propagation of granite under cyclic-injection hydraulic frac-turing[J].Journal of Petroleum Science and Engineering,2022,212:110278.

    • [14] KUMARI W G P,RANJITH P G,PERERA M S A,et al.Hydraulic fracturing under high temperature and pressure conditions with micro CT applications:geothermal energy from hot dry rocks[J].Fuel,2018,230:138-154.

    • [15] CHENG Y,ZHANG Y,YU Z,et al.Investigation on reservoir stimulation characteristics in hot dry rock geothermal formations of China during hydraulic fracturing[J].Rock Mechanics and Rock Engineering,2021,54(8):3817-3845.

    • [16] 齐宁,甘俊冲,章泽辉,等.径向井辅助前置液酸压裂缝扩展数值模拟[J].中国石油大学学报(自然科学版),2024,48(3):101-110.QI Ning,GAN Junchong,ZHANG Zehui,et al.Numerical simulation of fracture propagation guided by radial well assisted preflush acid fracturing[J].Journal of China University of Petroleum(Edition of Natural Science),2024,48(3):101-110.

    • [17] 王继伟,曲占庆,郭天魁,等.基于CDEM的页岩甲烷原位燃爆压裂数值模拟[J].中国石油大学学报(自然科学版),2023,47(1):106-115.WANG Jiwei,QU Zhanqing,GUO Tiankui,et al.Numerical simulation on fracture propagation of methane in-situ explosion fracturing in shale gas reservoirs[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(1):106-115.

    • [18] GUO T,TANG S,LIU S,et al.Numerical simulation of hydraulic fracturing of hot dry rock under thermal stress[J].Engineering Fracture Mechanics,2020,240:107350.

    • [19] ZHANG W,GUO T,QU Z,et al.Research of fracture initiation and propagation in HDR fracturing under thermal stress from meso-damage perspective[J].Energy,2019,178:508-521.

    • [20] ZHANG W,WANG C,GUO T,et al.Study on the cracking mechanism of hydraulic and supercritical CO2 fracturing in hot dry rock under thermal stress[J].Energy,2021,221:119886.

    • [21] 王伟,付豪,邢林啸,等.基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为[J].地球科学,2021,46(10):3509-3519.WANG Wei,FU Hao,XING Linxiao,et al.Crack propagation behavior of carbonatite geothermal reservoir rock mass based on extended finite element [J].Method Earth Science,2021,46(10):3509-3519.

    • [22] ZHOU Z,JIN Y,ZENG Y,et al.Investigation on fracture creation in hot dry rock geothermal formations of China during hydraulic fracturing[J].Renewable Energy,2020,153:301-313.

    • [23] ZHAO C,ZHANG Z,WANG S,et al.Effects of fracture network distribution on excavation-induced coupled responses of pore pressure perturbation and rock mass deformation[J].Computers and Geotechnics,2022,145:104670.

    • [24] AKDAS S B,ONUR M.Analytical solutions for predicting and optimizing geothermal energy extraction from an enhanced geothermal system with a multiple hydraulically fractured horizontal-well doublet[J].Renewable Energy,2022,181:567-580.

    • [25] SALIMZADEH S,PALUSZNY A,NICK H M,et al.A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems[J].Geothermics,2018,71:212-224.

    • [26] JIRÁSEK M,BAUER M.Numerical aspects of the crack band approach[J].Computers & Structures,2012,110:60-78.

    • [27] TANG C A,LIANG Z Z,ZHANG Y B,et al.Fracture spacing in layered materials:a new explanation based on two-dimensional failure process modeling[J].American Journal of Science,2008,308(1):49-72.

    • [28] WEI C H,ZHU W C,YU Q L,et al.Numerical simulation of excavation damaged zone under coupled thermal-mechanical conditions with varying mechanical parameters[J].International Journal of Rock Mechanics and Mining Sciences,2015,75:169-181.

    • [29] MOORE J,MCLENNAN J,ALLIS R,et al.The utah frontier observatory for research in geothermal energy(FORGE):an international laboratory for enhanced geothermal system technology development:44th Workshop on Geothermal Reservoir Engineering[C].Stanford,California:Stanford University,2019.

    • [30] GHASSEMI A,ZHANG Q.A transient fictitious stress boundary element method forporothermoelastic media[J].Engineering Analysis with Boundary Elements,2004,28:1363-1373.

    • [31] DETOURNAY E.Propagation regimes of fluid-driven fractures in impermeable rocks[J].International Journal of Geomechanics,2004,4:35-45.

  • 参考文献

    • [1] 巩亮,韩东旭,陈峥,等.增强型地热系统关键技术研究现状及发展趋势[J].天然气工业,2022,42(7):135-159.GONG Liang,HAN Dongxu,CHEN Zheng,et al.Research status and development trend of key technologies for an enhanced geothermal system[J].Natural Gas Industry,2022,42(7):135-159.

    • [2] ZHANG X,HUANG Z,LEI Q,et al.Impact of fracture shear dilation on long-term heat extraction in enhanced geothermal systems:insights from a fully-coupled thermo-hydro-mechanical simulation[J].Geothermics,2021,96:102216.

    • [3] ZHANG X,HUANG Z,LEI Q,et al.Improving heat extraction performance of enhanced geothermal systems:insights from critical fracture network parameter and multi-objective optimization method [J].Applied Thermal Engineering,2022,213:118671.

    • [4] ZHANG X,JIA C,YAO J,et al.An evaluation framework for production performance of high-temperature fractured andkarstified geothermal reservoirs:production mechanism,sensitivity study,and key parameters ranking[J].Gondwana Research,2023,122:279-305.

    • [5] LI Q,YIN T,LI X,et al.Effects of rapid cooling treatment on heated sandstone:a comparison between water and liquid nitrogen cooling[J].Bulletin of Engineering Geology and the Environment,2020,79:313-327.

    • [6] ZHU Z,RANJITH P G,TIAN H,et al.Relationships between P-wave velocity and mechanical properties of granite after exposure to different cyclic heating andwater cooling treatments[J].Renewable Energy,2021,168:375-392.

    • [7] WU Q,WENG L,ZHAO Y,et al.On the tensile mechanical characteristics of fine-grained granite after heating/cooling treatments with different cooling rates[J].Engineering Geology,2019,253:94-110.

    • [8] 梁铭,张绍和,舒彪.不同冷却方式对高温花岗岩巴西劈裂特性的影响[J].水资源与水工程学报,2018,29(2):186-193.LIANG Ming,ZHANG Shaohe,SHU Biao.Effect of different cooling ways on Brazilian tension characteristics of heat—treated granite[J].Journal of Water Resources & Water Engineering,2018,29(2):186-193.

    • [9] 余莉,彭海旺,李国伟,等.花岗岩高温-水冷循环作用下的试验研究[J].岩土力学,2021,42(4):1025-1035.YU Li,PENG Haiwang,LI Guowei,et al.Experimental study on granite under high temperature-water cooling cycle[J].Rock and Soil Mechanics,2021,42(4):1025-1035.

    • [10] 崔翰博,唐巨鹏,姜昕彤.自然冷却和遇水冷却后高温花岗岩力-声特性试验研究[J].固体力学学报,2019,40(6):571-582.CUI Hanbo,TANG Juepeng,JIANG Xintong.Experimental study on the mechanical-acoustic characteristics of high-temperature granite after natural cooling and water cooling[J].Chinese Journal of Solid Mechanics,2019,40(6):571-582.

    • [11] 谢紫霄,黄中伟,熊建华,等.天然裂缝对干热岩水力压裂裂缝扩展的影响规律[J].天然气工业,2022,42(4):63-72.XIE Zixiao,HUANG Zhongwei,XIONG Jianhua,et al.Influence of natural fractures on the propagation of hydraulic fractures in hot dry rock[J].Natural Gas Industry,2022,42(4):63-72.

    • [12] ZHANG S,HUANG Z,HUANG P,et al.Numerical and experimental analysis of hot dry rock fracturing stimulation with high-pressure abrasive liquid nitrogen jet[J].Journal of Petroleum Science and Engineering,2018,163:156-165.

    • [13] LIU Y,XU T,YUAN Y,et al.A laboratory study on fracture initiation and propagation of granite under cyclic-injection hydraulic frac-turing[J].Journal of Petroleum Science and Engineering,2022,212:110278.

    • [14] KUMARI W G P,RANJITH P G,PERERA M S A,et al.Hydraulic fracturing under high temperature and pressure conditions with micro CT applications:geothermal energy from hot dry rocks[J].Fuel,2018,230:138-154.

    • [15] CHENG Y,ZHANG Y,YU Z,et al.Investigation on reservoir stimulation characteristics in hot dry rock geothermal formations of China during hydraulic fracturing[J].Rock Mechanics and Rock Engineering,2021,54(8):3817-3845.

    • [16] 齐宁,甘俊冲,章泽辉,等.径向井辅助前置液酸压裂缝扩展数值模拟[J].中国石油大学学报(自然科学版),2024,48(3):101-110.QI Ning,GAN Junchong,ZHANG Zehui,et al.Numerical simulation of fracture propagation guided by radial well assisted preflush acid fracturing[J].Journal of China University of Petroleum(Edition of Natural Science),2024,48(3):101-110.

    • [17] 王继伟,曲占庆,郭天魁,等.基于CDEM的页岩甲烷原位燃爆压裂数值模拟[J].中国石油大学学报(自然科学版),2023,47(1):106-115.WANG Jiwei,QU Zhanqing,GUO Tiankui,et al.Numerical simulation on fracture propagation of methane in-situ explosion fracturing in shale gas reservoirs[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(1):106-115.

    • [18] GUO T,TANG S,LIU S,et al.Numerical simulation of hydraulic fracturing of hot dry rock under thermal stress[J].Engineering Fracture Mechanics,2020,240:107350.

    • [19] ZHANG W,GUO T,QU Z,et al.Research of fracture initiation and propagation in HDR fracturing under thermal stress from meso-damage perspective[J].Energy,2019,178:508-521.

    • [20] ZHANG W,WANG C,GUO T,et al.Study on the cracking mechanism of hydraulic and supercritical CO2 fracturing in hot dry rock under thermal stress[J].Energy,2021,221:119886.

    • [21] 王伟,付豪,邢林啸,等.基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为[J].地球科学,2021,46(10):3509-3519.WANG Wei,FU Hao,XING Linxiao,et al.Crack propagation behavior of carbonatite geothermal reservoir rock mass based on extended finite element [J].Method Earth Science,2021,46(10):3509-3519.

    • [22] ZHOU Z,JIN Y,ZENG Y,et al.Investigation on fracture creation in hot dry rock geothermal formations of China during hydraulic fracturing[J].Renewable Energy,2020,153:301-313.

    • [23] ZHAO C,ZHANG Z,WANG S,et al.Effects of fracture network distribution on excavation-induced coupled responses of pore pressure perturbation and rock mass deformation[J].Computers and Geotechnics,2022,145:104670.

    • [24] AKDAS S B,ONUR M.Analytical solutions for predicting and optimizing geothermal energy extraction from an enhanced geothermal system with a multiple hydraulically fractured horizontal-well doublet[J].Renewable Energy,2022,181:567-580.

    • [25] SALIMZADEH S,PALUSZNY A,NICK H M,et al.A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems[J].Geothermics,2018,71:212-224.

    • [26] JIRÁSEK M,BAUER M.Numerical aspects of the crack band approach[J].Computers & Structures,2012,110:60-78.

    • [27] TANG C A,LIANG Z Z,ZHANG Y B,et al.Fracture spacing in layered materials:a new explanation based on two-dimensional failure process modeling[J].American Journal of Science,2008,308(1):49-72.

    • [28] WEI C H,ZHU W C,YU Q L,et al.Numerical simulation of excavation damaged zone under coupled thermal-mechanical conditions with varying mechanical parameters[J].International Journal of Rock Mechanics and Mining Sciences,2015,75:169-181.

    • [29] MOORE J,MCLENNAN J,ALLIS R,et al.The utah frontier observatory for research in geothermal energy(FORGE):an international laboratory for enhanced geothermal system technology development:44th Workshop on Geothermal Reservoir Engineering[C].Stanford,California:Stanford University,2019.

    • [30] GHASSEMI A,ZHANG Q.A transient fictitious stress boundary element method forporothermoelastic media[J].Engineering Analysis with Boundary Elements,2004,28:1363-1373.

    • [31] DETOURNAY E.Propagation regimes of fluid-driven fractures in impermeable rocks[J].International Journal of Geomechanics,2004,4:35-45.