en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

罗慎超(1981-),男,高级工程师,研究方向为油气地质。E-mail: lishc-tlm@petrochina.com.cn。

通信作者:

田金强(1981-),男,教授,博士,研究方向为叠合盆地深层油气成藏机理。E-mail: tianjq@upc.edu.cn。

中图分类号:TE 122.3

文献标识码:A

文章编号:1673-5005(2025)04-0026-12

DOI:10.3969/j.issn.1673-5005.2025.04.003

参考文献 1
ZHU G Y,ZHANG B T,YANG H J,et al.Origin of deep strata gas of Tazhong in Tarim Basin,China[J].Organic Geochemistry,2014,74:85-97.
参考文献 2
杨海军,陈永权,田军,等.塔里木盆地轮探1井超深层油气勘探重大发现与意义[J].中国石油勘探,2020,25(2):62-72.YANG Haijun,CHEN Yongquan,TIAN Jun,et al.Great discovery and its signicance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J].China Petroleum Exploration,2020,25(2):62-72.
参考文献 3
王清华,徐振平,张荣虎,等.塔里木盆地油气勘探新领域、新类型及资源潜力[J].石油学报,2024,45(1):15-32.WANG Qinghua,XU Zhenping,ZHANG Ronghu,et al.New fields,new types of hydrocarbon explorations and their resource potentials in Tarim Basin[J].Acta Petrolei Sinica,2024,45(1):15-32.
参考文献 4
CONG F Y,TIAN J Q,HAO F,et al.A thermal pulse induced by a permian mantle plume in the Tarim Basin,Northwest China:constraints from clumped isotope thermometry and in situ calcite U-Pb dating[J].Journal of Geophysical Research:Solid Earth,2021,126(4):e2020JB020636.
参考文献 5
朱光有,李婧菲,张志遥.深层油气相态多样性成因与次生地球化学作用强度评价:以塔里木盆地海相油气为例[J/OL].地球科学,2021:1-17(2021-11-09)[2024-10-05]https://kns.cnki.net/kcms/detail/42.1874.P.20211108.1622.004.html.ZHU Guangyou,LI Jingfei,ZHANG Zhiyao,et al.Origin of deep oil and gas phase state diversity and evaluation of secondary geochemical intensity:a case study of marine oil and gas in Tarim Basin[J/OL].Earth Science,2021:1-17(2021-11-09)[2024-10-05] https://kns.cnki.net/kcms/detail/42.1874.P.20211108.1622.004.html.
参考文献 6
LI M,CHEN Z,YI S.Origin and accumulation mechanisms of deep paleozoic oil and gas:a case study of the central Tarim Basin,western China[J].Journal of Petroleum Science & Engineering,2022,208:109634.
参考文献 7
张科,苏劲,陈永权,等.塔里木盆地寒武系—奥陶系烃源岩油源特征与超深层油气来源[J].地质学报,2023,97(6):2026-2041.ZHANG Ke,SU Jin,CHEN Yongquan,et al.The biogeochemical features of the Cambrian-Ordovician source rocks and origin of ultra-deep hydrocarbons in the Tarim Basin[J].Chinese Journal of Geology,2023,97(6):2026-2041.
参考文献 8
贾承造.含油气盆地深层—超深层油气勘探开发的科学技术问题[J].中国石油大学学报(自然科学版),2023,47(5):1-12.JIA Chengzao.Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(5):1-12.
参考文献 9
杨德彬,鲁新便,鲍典,等.塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J].石油与天然气地质,2024,45(2):357-366.YANG Debin,LU Xinbian,BAO Dian,et al.New insights into the genetic types and characteristics of the Ordovician marine fault-karst carbonate reservoirs in the northern Tarim Basin[J].Oil & Gas Geology,2024,45(2):357-366.
参考文献 10
WANG X M,ZHANG S C.Petroleum characteristics and controlling factors in Lunnan low uplift,Tarim Basin[J].Journal of Earth Science,2010,21(2):236-246.
参考文献 11
吴楠,蔡忠贤,杨海军.塔河-轮南地区奥陶系油气充注史的综合厘定[J].中国科学:地球科学,2013,43(9):1445-1455.WU Nan,CAI Zhongxian,YANG Haijun,et al.Hydrocarbon charging of the Ordovician reservoirs in Tahe-Lunnan area,China[J].Science China:Earth Sciences,2013,43(9):1445-1455.
参考文献 12
CHEN J Q,MA K Y,PANG X Q,et al.Secondary migration of hydrocarbons in Ordovician carbonate reservoirs in the Lunnan area,Tarim Basin[J].Journal of Petroleum Science and Engineering,2020,188:106962.
参考文献 13
ZHANG Z Y,WANG H,ZHU G Y,et al.Phase fractionation and oil mixing as contributors to complex petroleum phase in deep strata:a case study from LG7 block in the Tarim Basin,China[J].Marine and Petroleum Geology,2022,140:105660.
参考文献 14
潘文庆,赵孟军,张宝民,等.塔里木盆地轮西地区奥陶系潜山油藏:一个海西期充注并降解的稠油油藏成藏实例分析[J].地质科学,2008,43(2):321-332.PAN Wenqing,ZHAO Mengjun,ZHANG Baomin,et al.Ordovician buried hill oilfield in western Lunnan area:an example of heavy oilfield formation for hydrocarbon charging and degrading in Hercynian period[J].Chinese Journal of Geology,2008,43(2):321-332.
参考文献 15
张水昌,朱光有,杨海军,等.塔里木盆地北部奥陶系油气相态及其成因分析[J].岩石学报,2011,27(8):2447-2460.ZHANG Shuichang,ZHU Guangyou,YANG Haijun,et al.The phases of Ordovician hydrocarbon and their origin in the Tabei uplift,Tarim Basin[J].Acta Petrologica Sinica,2011,27(8):2447-2460.
参考文献 16
ZHU G Y,ZHANG Z Y,ZHOU X X,et al.The complexity,secondary geochemical process,genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin,China[J].Earth-Science Reviews,2019,198:1-28.
参考文献 17
WANG Y P,ZHANG S C,WANG F Y,et al.Thermal cracking history by laboratory kinetic simulation of Paleozoic oil in Eastern Tarim Basin,NW China:implications for the occurrence of residual oil reservoirs[J].Organic Geochemistry,2006,37:1803-1815.
参考文献 18
赵文智,朱光有,苏劲,等.中国海相油气多期充注与成藏聚集模式研究:以塔里木盆地轮古东地区为例[J].岩石学报,2012,28(3):709-721.ZHAO Wenzhi,ZHU Guangyou,SU Jin,et al.Study on the multi-stage charging and accumulation model of Chinese marine petroleum:example from eastern Lungu area in the Tarim Basin[J].Acta Petrologica Sinica,2012,28(3):709-721.
参考文献 19
房启飞,张鼐,张宝收,等.塔里木盆地轮古东地区奥陶系储层流体包裹体研究及油气成藏史[J].天然气地球科学,2014,25(10):1558-1567.FANG Qifei,ZHANG Nai,ZHANG Baoshou,et al.Characteristics of hydrocarbon inclusions and geological age of hydrocarbon accumulation in Ordovician reservoir of Eastern Lungu Area,Tarim Basin[J].Natural Gas Geoscience,2014,25(10):1558-1567.
参考文献 20
LIU Q Y,JIN Z J,LI H L,et al.Geochemistry characteristics and genetic types of natural gas in central part of the Tarim Basin,NW China[J].Marine & Petroleum Geology,2017,89:91-105.
参考文献 21
CONG F Y,TIAN J Q,HAO F,et al.Calcite U-Pb ages constrain petroleum migration pathways in tectonic complex basins[J].Geology,2022,50:644-649.
参考文献 22
LI S M,SHI Q,PANG X Q,et al.Origin of the unusually high dibenzothiophene oils in Tazhong-4 Oilfield of Tarim Basin and its implication in deep petroleum exploration[J].Organic Geochemistry,2012,48:56-80.
参考文献 23
乔俊程,常少英,曾溅辉,等.塔里木盆地北部富满地区超深层走滑断裂带碳酸盐岩油气差异成藏成因探讨[J].石油与天然气地质,2024,45(5):1226-1246.QIAO Juncheng,CHANG Shaoying,ZENG Jianhui,et al.Origin of differential hydrocarbon accumulation in ultra-deep carbonate reservoirs along strike-slip fault zones in the Fuman area,northern Tarim Basin[J].Oil & Gas Geology,2024,45(5):1226-1246.
参考文献 24
曹自成,云露,漆立新,等.塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J].石油与天然气地质,2024,45(2):341-356.CAO Zicheng,YUN Lu,QI Lixin,et al.A major discovery of hydrocarbon-bearing layers over 1000-meter thick in well Shunbei 84X,Shunbei area,Tarim Basin and its implications[J].Oil & Gas Geology,2024,45(2):341-356.
参考文献 25
杨海军,张银涛,关宝珠,等.塔里木盆地哈拉哈塘奥陶系缝洞型碳酸盐岩油田的勘探发现与评价探明[J].海相油气地质,2023,28(2):113-122.YANG Haijun,ZHANG Yintao,GUAN Baozhu,et al.Exploration and development of the Ordovician carbonate oil field in Halahatang,Tarim Basin[J].Marine Origin Petroleum Geology,2023,28(2):113-122.
参考文献 26
关晓东,郭磊.深层—超深层油气成藏研究新进展及展望[J].石油实验地质,2023,45(2):203-209.GUAN Xiaodong,GUO Lei.New progress and prospect of oil and gas accumulation research in deep to ultra-deep strata[J].Petroleum Geology & Experiment,2023,45(2):203-209.
参考文献 27
漆立新,丁勇.塔里木盆地顺北地区东西部海相油气成藏差异[J].石油实验地质,2023,45(1):20-28.QI Lixin,DING Yong.Differences in marine hydrocarbon accumulation between the eastern and western parts of Shunbei area,Tarim Basin[J].Petroleum Geology & Experiment,2023,45(1):20-28.
参考文献 28
杨海军,郝芳,韩剑发,等.塔里木盆地轮南低凸起断裂系统与复式油气聚集[J].地质科学,2007,42(4):795-811.YANG Haijun,HAO Fang,HAN Jianfa,et al.Fault systems and multiple oil-gas accumulation play of the Lunnan lower uplift,Tarim basin[J].Chinese Journal of Geology,2007,42(4):795-811.
参考文献 29
ZHU G Y,CHEN F R,WANG M,et al.Discovery of the lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin,China[J].AAPG Bulletin,2018,102(10):2123-2151.
参考文献 30
吴梅莲,刘永福,彭鹏,等.轮南古潜山走滑断裂特征及其对油气成藏的影响[J].断块油气田,2021,28(4):456-462.WU Meilian,LIU Yongfu,PENG Peng,et al.Characteristics of strike-slip faults in Lunnan buried hill and its influence on hydrocarbon accumulation[J].Fault-Block Oil & Gas Field,2021,28(4):456-462.
参考文献 31
DENG S,LI H L,ZHANG Z P,et al.Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J].AAPG Bulletin,2019,103(1):109-137.
参考文献 32
邓尚,邱华标,刘大卫,等.克拉通内走滑断裂成因与控藏机制研究进展:以塔里木盆地北部为例[J].石油与天然气地质,2024,45(5):1211-1225.DENG Shang,QIU Huabiao,LIU Dawei,et al.Advances in research on the genetic mechanisms of intracratonic strike-slip fault system and their control on hydrocarbon accumulation:a case study of the northern Tarim Basin[J].Oil & Gas Geology,2024,45(5):1211-1225.
参考文献 33
李凤磊,林承焰,张国印,等.塔北地区多期走滑断裂地球物理响应特征及精细识别[J].中国石油大学学报(自然科学版),2024,48(3):1-14.LI Fenglei,LIN Chengyan,ZHANG Guoyin,et al.Characteristics of geophysical response and fine identification of multistage strike-slip fault in Tabei area [J].Journal of China University of Petroleum(Edition of Natural Science),2024,48(3):1-14.
参考文献 34
ZHANG S C,HUANG H P,SU J,et al.Geochemistry of Palaeozoic marine oils from the Tarim Basin,NW China.Part 4:Paleobiodegradation and oil charge mixing[J].Organic Geochemistry,2014,67:41-57.
参考文献 35
JIA W L,XIAO Z Y,YU C L,et al.Molecular and isotopic compositions of bitumens in Silurian oil sands from the Tarim Basin,NW China:characterizing biodegradation and hydrocarbon charging in an old composite basin[J].Marine and Petroleum Geology,2010,27:13-25.
参考文献 36
CHEN Z H,CHAI Z,CHENG B,et al.Geochemistry of high-maturity crude oil and gas from deep reservoirs and their geological significance:a case study on Shuntuoguole low uplift,Tarim Basin,western China[J].AAPG Bulletin,2021,105(1):65-107.
参考文献 37
LIU X,TIAN J Q,HAO F,et al.The generation mechanism of deep natural gas in Tabei uplift,Tarim Basin,Northwest China:insights from instantaneous and accumulative effects[J].Petroleum Science,2024,21(6):3804-3814.
参考文献 38
韩鹏远,丁文龙,杨德彬,等.塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J].石油与天然气地质,2024,45(3):770-786.HAN Pengyuan,DING Wenlong,YANG Debin,et al.Characteristics of the S80 strike-slip fault zone and its controlling effects on the Ordovician reservoirs in the Tahe oilfield,Tarim Basin[J].Oil & Gas Geology,2024,45(3):770-786.
参考文献 39
韩杰,袁源,洪涛,等.轮古东走滑断裂破碎带结构及与油气关系[J].中国地质,2016,43(4):1304-1316.HAN Jie,YUAN Yuan,HONG Tao,et al.The structure of crushed zone near the Lungudong strike slip fault and its relationship with the gas and oil[J].Geology in China,2016,43(4):1304-1316.
参考文献 40
李洪辉,曹颖辉,陈志勇,等.塔里木盆地塔北隆起轮南低凸起断裂与深层油气勘探[J].天然气地球科学,2020,31(12):1677-1686.LI Honghui,CAO Yinghui,CHEN Zhiyong,et al.The faults and deep petroleum exploration in the Lunnan lower uplift of the Tabei rise,Tarim Basin[J].Natural Gas Geoscience,2020,31(12):1677-1686.
参考文献 41
马德波,杨敏,杜德道,等.多期活动古隆起复合叠加过程解析:以塔里木盆地轮南古隆起为例[J].岩石学报,2020,36(11):3523-3536.MA Debo,YANG Min,DU Dedao,et al.Analysis of the superposition process of multiphase active paleo-uplift:taking the Lunnan paleo-uplift in the Tarim Basin as an example[J].Acta Petrologica Sinica,2020,36(11):3523-3536.
参考文献 42
ZHU G Y,LI J F,CHI L X,et al.The influence of gas invasion on the composition of crude oil and the controlling factors for reservoir fluid phase[J].Energy & Fuels,2020,34:2710-2725.
参考文献 43
ZHANG Z Y,ZHU G Y,ZHANG Y J,et al.The origin and accumulation of multi-phase reservoirs in the east Tabei Uplift,Tarim Basin,China[J].Marine and Petroleum Geology,2018,98:533-553.
参考文献 44
马海陇,蒋林,丁文龙,等.塔里木盆地兰尕与和田河断裂带变形特征及成藏演化模式[J].石油与天然气地质,2024,45(5):1259-1274.MA Hailong,JIANG Lin,DING Wenlong,et al.Deformation characteristics and hydrocarbon accumulation models of the Lan'ga and Hotan River fault zones in the Tarim Basin[J].Oil & Gas Geology,2024,45(5):1259-1274.
目录contents

    摘要

    为探究塔里木盆地轮南地区奥陶系原油性质差异及其控制因素。通过对奥陶系原油密度、含蜡量、气油比、饱和烃、芳烃等参数特征进行系统对比分析,并结合油气充注期次、经历的次生改造,明确东西部原油性质空间差异及控制因素。结果表明,轮南地区奥陶系原油密度呈“东西重中间低”特征,含蜡量、气油比、饱和烃含量、原油成熟度参数呈“西低东高”特征。不同时期断裂的活动导致原油多期充注和次生改造的空间差异控制了原油性质。轮南地区油气存在加里东晚期—海西早期、海西晚期、燕山期和喜山晚期4期充注。轮古西地区原油以前两期充注为主,仅零星井发生第三期原油充注,且严重的生物降解导致该地区主要表现为稠油藏。中平台地区前两期原油充注明显,部分井存在晚期高熟油气充注,相对降低的生物降解程度和蒸发分馏作用,使该地区主要表现为正常油和凝析气藏。轮古东地区明显的4期油气充注和蒸发分馏作用,导致该地区主要表现为中等重质油藏和干气藏。

    Abstract

    To investigate the control factors and regional differences in the properties of Ordovician crude oil in the Lunnan area of Tarim Basin, a systematic comparative analysis was conducted using oil density, wax content, gas-oil ratio, and the contents of saturated hydrocarbons and aromatics. These parameters were examined in conjunction with the timing of oil and gas charging and the effects of secondary alterations, in order to clarify the spatial variations and controlling mechanisms of crude oil properties between the eastern and western regions. The results indicate that crude oil density in the Lunnan area follows a pattern of being heavier in the east and west and lighter in the middle. In contrast, wax content, gas-oil ratio, saturated hydrocarbon content, and oil maturity parameters exhibit a "lower in the west, higher in the east" distribution. Variations in fault activity during different tectonic periods have resulted in spatial heterogeneity in multi-phase hydrocarbon charging and secondary modification, which ultimately control crude oil characteristics. Hydrocarbon charging in the Lunnan area occurred during four major orogenic events: the late Caledonian to early Hercynian, late Hercynian, Yanshan, and late Himalayan orogenies. In the Lunguxi area, primary oil charging occurred mainly during the first two orogenies, with limited evidence of charging during the third. This area is characterized by heavy oil reservoirs due to significant biodegradation. On the central platform, oil charging during the first two orogenies was dominant, with some wells also indicating high-maturity oil and gas input during later orogenies. Lower degrees of biodegradation and evaporative fractionation in this region have resulted in predominantly normal oil and condensate gas reservoirs. In the Lungudong area, oil and gas charging occurred during all four orogenies, accompanied by evaporative fractionation, leading to the predominance of medium-heavy oil and dry gas reservoirs.

  • 塔里木盆地深层油气资源丰富,海相油气储量达50×108 t油当量[1-3],是中国重要的海相含油气盆地,目前已经在塔北、塔中、富满、库车等地区发现了多个大型油气田[4-9]。经过多年的勘探发现,轮南地区是塔北重要的产油气区,该地区是一个包括寒武系、奥陶系、石炭系、三叠系、侏罗系、白垩系和古近系在内的典型复式油气聚集区,其中奥陶系是最重要的一个产油气层系[210-13]。轮南地区奥陶系储层中干气、凝析气、挥发油、正常油和稠油多种油气相态共存。东西部油气性质与相态存在明显差异,西部以稠油为主,中部为正常油和凝析气藏,东部主要为中等重质油藏和干气藏[513-15]。油气成藏过程中的多期充注和经历的次生改造对油气性质具有重要影响,主要包括生物降解、热化学硫酸盐还原作用(TSR)、蒸发分馏、热裂解等[15-17]。近年来,前人对轮南地区油气充注、次生改造等进行了大量研究[1512-13]。结果表明,轮南地区具有多期生烃特征,油气发生多次混合,并存在明显的生物降解,蒸发分馏等次生改造作用,均对原油性质产生重要影响[121318-20]。但充注期次、次生改造等因素对奥陶系油气地化特征影响程度的认识目前还相对薄弱,因此轮南地区原油性质区域差异的受控因素仍需进一步探究。笔者以轮南地区奥陶系油气藏为研究对象,通过对原油密度、含蜡量以及饱和烃、芳烃等参数进行系统对比分析,并结合断裂活动期次,明确东西部原油性质差异,揭示其控制因素,为研究区下一步油气勘探提供依据。

  • 1 地质概况

  • 塔里木盆地位于中国西北部,面积为56×104 km2,是中国内陆面积最大的含油气盆地,油气资源丰富[2521-27]。塔里木盆地可分为塔北隆起、北部坳陷带、中央隆起带、东南断隆带和西南坳陷带(图1(a))。轮南地区位于塔里木盆地塔北隆起东部,南部是满加尔凹陷,东部是草湖凹陷。

  • 轮南地区自下而上依次沉积震旦系、寒武系、奥陶系、石炭系、三叠系、侏罗系、白垩系、古近系、第四系,缺失志留系、泥盆系、二叠系。中上奥陶统桑塔木组、一间房组呈裙边状尖灭。奥陶系及以下地层深度自西向东逐渐变大(图2,剖面位置A-A’见图1)[28-30]。轮南地区寒武—奥陶系地层序列从老到新依次为玉尔吐斯组( ∈1y)、肖尔布拉克组(∈1x)、吾松格尔组(∈1w)、沙依里克组(∈2s)、阿瓦塔格组(∈2a)、蓬莱坝组(O1p)、鹰山组(O1-2y)、一间房组(O2yj)、恰尔巴克组(O3t)、良里塔格组(O3l)、桑塔木组(O3s)。寒武系玉尔吐斯组是轮南地区主要的烃源岩层,鹰山组(O1-2y)和一间房组(O2yj)是奥陶系最重要的油气储集层,桑塔木组(O3s)和上部石炭系是奥陶系含油气层主要的盖层(图2)。

  • 轮南地区平面上发育北北东(NNE)向和北北西(NNW)向的“X”剪切型走滑断裂,呈菱形相交,以及北东东(NEE)向走滑断裂和东西向逆冲断裂[101230-33]。其中大型断裂主要包括轮西断裂、轮古东断裂、轮南断垒带、桑塔木断垒带,均贯穿多个层系(图2,Ro为镜质体反射率)。

  • 2 样品与方法

  • 采集了23个轮南地区奥陶系原油样品,进行饱和烃色谱色质和芳烃色谱色质实验,所有样品的测试均在中国石油大学(华东)深层油气全国重点实验室完成。采用Agilent 5975i质谱联用Agilent 6890系列气相色谱仪对油样中的饱和烃和芳烃组分进行多离子检测气相色谱-质谱(GC-MS)分析。加入约100 mL正己烷溶解油(10~15 mg),然后洗涤,在烧瓶中摇晃,静置24 h,最后过滤。可溶馏分是饱和烃、芳香烃和非烃的混合物。采用液相色谱法,硅胶/氧化铝柱分离可溶性成分。在分离之前,二氧化硅和氧化铝分别在150℃和450℃下活化8 h和5 h。然后,将它们以二氧化硅/氧化铝3∶1的比例(体积)添加到柱中,二氧化硅在氧化铝上方。经石油醚润湿后,色谱柱内填充可溶混合物。沥青质随着正己烷的加入而沉淀。用二氯甲烷(20 mL)和正己烷-二氯甲烷(30 mL,体积比50∶50)的混合物分别洗脱得到饱和烃和芳香烃。原油密度和含蜡量通过中石油塔里木油田分公司收集。

  • 图1 轮南地区地质概况

  • Fig.1 Geological profile of Lunnan area

  • 采集3口井奥陶系岩心样品进行包裹体观察和均一温度测定,测试在中国石油大学(华东)深层油气全国重点实验室完成。包裹体观察采用LV100偏光显微镜和Maya2000 pro光纤光谱仪。LINKAMD THMSG600型冷热台用于流体包裹体均一温度测定,测量精度为±0.1℃,能准确反映油气包裹体的盐水包裹体均一温度。Petromod软件用于一维埋藏史模拟,在模拟的过程中,输入地层界线、沉积年龄、断层属性、沉积相要素(包括岩性、生储盖的分布情况、烃源岩特征)和边界条件(包括剥蚀时间和剥蚀厚度、古热流、古水深)。

  • 3 原油性质与空间差异

  • 3.1 原油物性

  • 原油密度和含蜡量在地质条件下受多种因素影响,如生物降解、蒸发分馏作用、烃源岩成熟度、多期原油混合等[34-35]。轮南地区奥陶系原油密度介于0.78~1.04 g/cm3,平均为0.86 g/cm3,呈“东西重中间低”特征,靠近北东东向断裂和轮南断垒带附近原油密度较周缘偏低(图3)。轮古东地区原油密度介于0.80~0.88 g/cm3,平均为0.85 g/cm3;中平台地区原油密度介于0.78~0.87 g/cm3,平均为0.83 g/cm3;轮古西地区原油密度介于0.94~1.04 g/cm3,平均为1.00 g/cm3。西部地区原油密度较大,主要为稠油。

  • 图2 轮南地区东西向剖面和断层图

  • Fig.2 Cross section showing stratigraphic framework and fault distribution in Lunnan area

  • 图3 轮南地区奥陶系原油密度平面分布

  • Fig.3 Oil density planar distribution of Ordovician reservoirs in Lunnan area

  • 轮南地区奥陶系原油含蜡量东西部差异较大,呈“西低东高”特征,介于1.50%~33.58%,平均为10.42%,靠近北东东向断裂和轮南断垒带附近原油含蜡量较周缘井偏低(图4)。轮古东地区原油含蜡量介于5.30%~33.58%,平均为12.55%;中平台地区原油含蜡量介于1.50%~26.64%,平均为10.85%;轮古西地区原油含蜡量介于2.10%~9.63%,平均为5.95%。

  • 3.2 气油比

  • 奥陶系气油比与含蜡量特征相似,总体上呈“东高西低”特征(图5)。东西部油气藏相态的差异,导致气油比变化较大,介于0.07~27937,平均为5609。轮古东地区奥陶系储层中主要为中等重质油藏和干气藏,气油比均超过5000,介于5280~17464,平均为11627;中平台地区气油比介于25~27937,平均为4798,从西到东呈大幅增加趋势。轮古东及中平台东部地区气油比主要为凝析气藏气油比,因此该地区附近气油比异常高。轮古西地区主要为稠油藏,气油比明显较低,介于0.07~43.43,平均为22.75(图5)。

  • 图4 轮南地区奥陶系原油含蜡量平面分布

  • Fig.4 Wax content planar distribution of the Ordovician reservoirs in Lunnan area

  • 图5 轮南地区奥陶系气油比平面分布

  • Fig.5 Gas/oil ratio planar distribution of the Ordovician reservoirs in Lunnan area

  • 3.3 原油族组分

  • 原油饱和烃含量受成熟度、次生改造等因素影响[512]。轮南地区奥陶系原油饱和烃含量东西部差异较大,介于24.40%~91.20%,平均为73.78%,靠近北东东向断裂,轮古东断裂和轮南断垒带附近原油饱和烃含量较高。轮古东地区原油饱和烃质量分数介于73.12%~90.10%,平均为80.26%;中平台地区原油饱和烃质量分数介于50.67%~91.20%,平均为77.50%;轮古西地区原油饱和烃含量明显较中部和西部偏低(图6),介于24.40%~64.35%,平均为45.52%。

  • 3.4 原油成熟度

  • 原油成熟度与烃源岩演化程度、油气充注过程密切相关[1136]。轮南地区原油成熟度参数w(Ts)/w(Ts+Tm)自西向东呈逐渐增大趋势(图7),介于0.29~0.96,平均为0.64。轮古东地区w(Ts)/w(Ts+Tm)介于0.60~0.96,平均为0.82;中平台地区w(Ts)/w(Ts+Tm)介于0.31~0.91,平均为0.67;轮古西地区w(Ts)/w(Ts+Tm)介于0.29~0.47,平均为0.36。甲基菲指数(MPI-1)与w(Ts)/w(Ts+Tm)参数变化趋势相似(图7),整体介于0.64~1.07,平均为0.82。轮古东地区MPI-1值介于0.72~1.02,平均为0.87;中平台地区MPI-1值介于0.67~1.07,平均为0.84;轮古西地区MPI-1值介于0.64~0.83,平均为0.75。成熟度参数w(Ts)/w(Ts+Tm)和MPI-1的差异反映了轮南地区西部烃源岩成熟度低,往东增加的趋势。

  • 图6 轮南地区奥陶系原油饱和烃含量平面分布

  • Fig.6 Planar distribution of saturated hydrocarbon content of Ordovician crude oil in Lunnan area

  • 图7 轮南地区奥陶系原油w(Ts)/w(Ts+Tm)与 MPI-1关系

  • Fig.7 Correlation of w (Ts) /w (Ts+Tm) and MPI-1 of Ordovician crude oil in Lunnan area

  • 4 原油性质差异控制因素

  • 油气充注期次、断裂活动、烃源岩成熟度以及次生改造(生物降解、蒸发分馏作用、TSR(热化学硫酸盐还原反应)作用)等是影响原油性质的重要因素[51237-38]。轮南地区存在明显的多期充注和次生改造,但东西部经历地质过程的差异性,导致影响其原油性质的因素也不同。

  • 4.1 充注期次

  • 轮南地区在多个时期断裂发生明显活动,使原油发生多期充注,但东西部充注期次存在明显差异[3739-41]。通过对轮古西地区岩心包裹体观察、测温,发现该地区在“X”剪切断裂和轮古西断裂影响下,加里东晚期—海西早期和海西晚期发生原油普遍充注,但燕山晚期断裂活动性的减弱,高熟油充注仅发生在零星井,指示轮古西地区以加里东晚期—海西早期和海西晚期原油充注为主,导致其形成原油密度较大,饱和烃含量、气油比和成熟度参数均较低的特征(图8(a))。中平台地区在“X”剪切断裂,东西向逆冲的桑塔木断裂和轮南断裂的持续活动影响下,存在加里东晚期—海西早期、海西晚期、燕山晚期3期原油充注,喜山晚期1期天然气充注,但燕山晚期高熟油的充注和喜山晚期天然气的充注仅局部存在(图8(b))。

  • 轮古东地区由于“X”剪切断裂和南北向轮古东断裂在各时期的持续活动(图9),油气存在4期充注,分别为加里东晚期—海西早期、海西晚期、燕山晚期原油充注,喜山晚期天然气充注,且该地区普遍存在燕山期轻质油和喜山期天然气的充注,导致其原油成熟度呈相对较高特征。

  • 图8 轮南地区典型井奥陶系流体包裹体均一温度-埋藏史投影示意图

  • Fig.8 Schematic diagram of homogenization temperature-burial history projection of Ordovician fluid inclusions in typical wells in Lunnan area

  • 4.2 次生改造

  • 轮南地区东西部奥陶系原油经历次生改造的差异性,是影响原油性质的另一重要因素。轮古西地区原油密度较高,而含蜡量和饱和烃较低,w(Ts)/w(Ts+Tm)和MPI-1参数指示成熟度较其余地区更低。通过埋藏史分析发现,在海西晚期地层抬升,奥陶系埋深较浅,盖层遭受抬升剥蚀,微生物活动使原油发生严重生物降解。通过TIC谱图(总离子流谱图)和M/Z 191谱图发现轮古西地区LG906井存在明显的UCM鼓包和25-降霍烷,这也指示了该地区遭受了明显的生物降解(图10)。

  • 轮古西地区严重的生物降解消耗大量的饱和烃,导致原油变稠,黏度增大,胶质+沥青含量增高,使原油密度与含蜡量无明显相关性,且原油密度在较高水平下含蜡量表现为异常低特征(图11)。因此,严重的生物降解是造成轮古西地区原油较稠,而饱和烃和含蜡量较低的重要因素。

  • 在中部地区,地层埋深和烃源岩成熟度介于轮古东和轮古西地区之间(图2)。TIC也未呈现明显的UCM鼓包,表明该地区生物降解程度较西部地区降低,导致其原油饱和烃含量和成熟度高于西部。同时,仅局部存在晚期高熟油气充注的位置发生蒸发分馏(图12)。因此,中平台地区原油密度低于轮古东和轮古西地区(图11),含蜡量和成熟度介于东西部之间。在轮古东地区,地层埋深较大,烃源岩成熟度较西部更高(图2)[1242]。喜山晚期天然气的充注,导致原油发生明显的蒸发分馏(图12),使该地区奥陶系形成“气干油重”的特征。这与以往的研究中发现,轮古东地区呈“早油晚气”的多期充注特征一致[543]。蒸发分馏带走原油中的轻组分,使原油密度与含蜡量呈明显正相关(图11),同时导致该地区在较高烃源岩成熟度条件下,原油密度依然保持较大的特征。因此,晚期天然气的充注导致蒸发分馏是影响轮古东地区油气相态与油气性质的重要因素。

  • 4.3 构造演化控制下的成藏过程

  • 复杂的地质历史条件会影响油气性质,进而使油气聚集过程存在差异。轮南地区在不同时期经历了复杂的构造运动,导致明显的多期充注以及多期充注明显的空间差异[283040-4144]。不同走滑断裂和东西向逆冲断裂在各时期油气运聚过程中发挥了重要作用。

  • 在加里东晚期—海西早期,南北向走滑的轮古东断裂,东西向逆冲的轮南断裂,北东向逆冲的轮西断裂,以及在中部和西部地区大量分布的北东向和北西向“X”剪切走滑断裂发生明显活动,且贯穿寒武系烃源岩层和奥陶系储层,使原油发生第一期充注[18-1930]。烃源岩生成的原油沿活动断裂向上运移到奥陶系储层。此时烃源岩成熟度较低,原油成熟度也较低。在海西晚期,东西向逆冲的桑塔木断裂和轮南断裂,轮古东断裂,轮古西断裂,以及部分北东东向走滑断裂活动,并错断部分早期断裂使原油发生第二期充注,此时烃源岩成熟度升高,达到生烃高峰[39-40]。同时该时期地层大幅抬升,奥陶系储层处于低温浅埋阶段,盖层受地层抬升影响,遭受剥蚀,使封盖条件变差,导致微生物活跃,充注的原油发生严重生物降解[1442]

  • 图9 轮南地区奥陶系不同时期活动断裂平面图

  • Fig.9 Active fault in the different periods of Ordovician reservoir in Lunnan area

  • 图10 轮南地区典型井奥陶系原油TIC,M/Z191谱图

  • Fig.10 TIC, M/Z191 spectra of Ordovician crude oil of typical wells in Lunnan area

  • 图11 轮南地区奥陶系原油密度与含蜡量关系

  • Fig.11 Correlation of density and wax content of Ordovician crude oil in Lunnan area

  • 图12 轮南地区奥陶系原油w(Tol)/wnC7)与 wnC7)/w(MCH)关系

  • Fig.12 Correlation of w (Tol) /w (nC7) and w (nC7) / w (MCH) of Ordovician crude oil in Lunnan area

  • 在燕山期,部分断裂活动性减弱,大量北东东向走滑断裂的活动,以及轮南断裂和轮古东断裂的持续活动[21118],使原油发生第三期充注,该时期原油充注在中平台地区和轮古东地区附近较为明显,而轮古西地区仅零星井存在,该时期烃源岩成熟度较高,生成的原油主要为轻质油。在喜山期,断裂活动进一步减弱,仅轮古东断裂以及中东部少量北东东向雁列式断裂活动,使靠近活动断裂附近发生第四期充注[1315],该时期烃源岩成熟度较高,主要为天然气充注。因此轮南地区不同断裂的多期差异活动以及地层抬升剥蚀是影响东西部油气充注和次生改造的重要因素。

  • 5 结论

  • (1)轮南地区原油密度呈“东西重中间低”特征,气油比呈自西向东增加趋势。轮古西地区原油密度和气油比平均为1.00 g/cm3和22.75,主要表现为稠油藏,中平台地区原油密度和气油比平均为0.83 g/cm3和4798,主要表现为正常油和凝析气藏,轮古东地区原油密度和气油比平均为0.85 g/cm3和11627,主要表现为中等重质油藏和干气藏。

  • (2)轮南地区油气充注期次和次生改造的空间差异是控制原油性质的主要因素。轮南地区油气存在4期充注,分别为加里东晚期—海西早期、海西晚期、燕山期和喜山晚期。轮古西地区原油以前两期充注为主,仅零星井发生第三期原油充注,且该地区严重的生物降解,导致原油密度较高,含蜡量和成熟度较低。中平台地区前两期原油充注明显,部分井存在第三期和第四期高熟油气的充注,且该地区相对于轮古西和轮古东地区降低的生物降解程度和蒸发分馏作用,使原油密度较低,含蜡量和成熟度介于东西部之间。轮古东地区普遍存在4期油气充注,且晚期经历的明显蒸发分馏作用,导致原油密度表现为相对较重特征,而含蜡量和成熟度较高。

  • 参考文献

    • [1] ZHU G Y,ZHANG B T,YANG H J,et al.Origin of deep strata gas of Tazhong in Tarim Basin,China[J].Organic Geochemistry,2014,74:85-97.

    • [2] 杨海军,陈永权,田军,等.塔里木盆地轮探1井超深层油气勘探重大发现与意义[J].中国石油勘探,2020,25(2):62-72.YANG Haijun,CHEN Yongquan,TIAN Jun,et al.Great discovery and its signicance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J].China Petroleum Exploration,2020,25(2):62-72.

    • [3] 王清华,徐振平,张荣虎,等.塔里木盆地油气勘探新领域、新类型及资源潜力[J].石油学报,2024,45(1):15-32.WANG Qinghua,XU Zhenping,ZHANG Ronghu,et al.New fields,new types of hydrocarbon explorations and their resource potentials in Tarim Basin[J].Acta Petrolei Sinica,2024,45(1):15-32.

    • [4] CONG F Y,TIAN J Q,HAO F,et al.A thermal pulse induced by a permian mantle plume in the Tarim Basin,Northwest China:constraints from clumped isotope thermometry and in situ calcite U-Pb dating[J].Journal of Geophysical Research:Solid Earth,2021,126(4):e2020JB020636.

    • [5] 朱光有,李婧菲,张志遥.深层油气相态多样性成因与次生地球化学作用强度评价:以塔里木盆地海相油气为例[J/OL].地球科学,2021:1-17(2021-11-09)[2024-10-05]https://kns.cnki.net/kcms/detail/42.1874.P.20211108.1622.004.html.ZHU Guangyou,LI Jingfei,ZHANG Zhiyao,et al.Origin of deep oil and gas phase state diversity and evaluation of secondary geochemical intensity:a case study of marine oil and gas in Tarim Basin[J/OL].Earth Science,2021:1-17(2021-11-09)[2024-10-05] https://kns.cnki.net/kcms/detail/42.1874.P.20211108.1622.004.html.

    • [6] LI M,CHEN Z,YI S.Origin and accumulation mechanisms of deep paleozoic oil and gas:a case study of the central Tarim Basin,western China[J].Journal of Petroleum Science & Engineering,2022,208:109634.

    • [7] 张科,苏劲,陈永权,等.塔里木盆地寒武系—奥陶系烃源岩油源特征与超深层油气来源[J].地质学报,2023,97(6):2026-2041.ZHANG Ke,SU Jin,CHEN Yongquan,et al.The biogeochemical features of the Cambrian-Ordovician source rocks and origin of ultra-deep hydrocarbons in the Tarim Basin[J].Chinese Journal of Geology,2023,97(6):2026-2041.

    • [8] 贾承造.含油气盆地深层—超深层油气勘探开发的科学技术问题[J].中国石油大学学报(自然科学版),2023,47(5):1-12.JIA Chengzao.Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(5):1-12.

    • [9] 杨德彬,鲁新便,鲍典,等.塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J].石油与天然气地质,2024,45(2):357-366.YANG Debin,LU Xinbian,BAO Dian,et al.New insights into the genetic types and characteristics of the Ordovician marine fault-karst carbonate reservoirs in the northern Tarim Basin[J].Oil & Gas Geology,2024,45(2):357-366.

    • [10] WANG X M,ZHANG S C.Petroleum characteristics and controlling factors in Lunnan low uplift,Tarim Basin[J].Journal of Earth Science,2010,21(2):236-246.

    • [11] 吴楠,蔡忠贤,杨海军.塔河-轮南地区奥陶系油气充注史的综合厘定[J].中国科学:地球科学,2013,43(9):1445-1455.WU Nan,CAI Zhongxian,YANG Haijun,et al.Hydrocarbon charging of the Ordovician reservoirs in Tahe-Lunnan area,China[J].Science China:Earth Sciences,2013,43(9):1445-1455.

    • [12] CHEN J Q,MA K Y,PANG X Q,et al.Secondary migration of hydrocarbons in Ordovician carbonate reservoirs in the Lunnan area,Tarim Basin[J].Journal of Petroleum Science and Engineering,2020,188:106962.

    • [13] ZHANG Z Y,WANG H,ZHU G Y,et al.Phase fractionation and oil mixing as contributors to complex petroleum phase in deep strata:a case study from LG7 block in the Tarim Basin,China[J].Marine and Petroleum Geology,2022,140:105660.

    • [14] 潘文庆,赵孟军,张宝民,等.塔里木盆地轮西地区奥陶系潜山油藏:一个海西期充注并降解的稠油油藏成藏实例分析[J].地质科学,2008,43(2):321-332.PAN Wenqing,ZHAO Mengjun,ZHANG Baomin,et al.Ordovician buried hill oilfield in western Lunnan area:an example of heavy oilfield formation for hydrocarbon charging and degrading in Hercynian period[J].Chinese Journal of Geology,2008,43(2):321-332.

    • [15] 张水昌,朱光有,杨海军,等.塔里木盆地北部奥陶系油气相态及其成因分析[J].岩石学报,2011,27(8):2447-2460.ZHANG Shuichang,ZHU Guangyou,YANG Haijun,et al.The phases of Ordovician hydrocarbon and their origin in the Tabei uplift,Tarim Basin[J].Acta Petrologica Sinica,2011,27(8):2447-2460.

    • [16] ZHU G Y,ZHANG Z Y,ZHOU X X,et al.The complexity,secondary geochemical process,genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin,China[J].Earth-Science Reviews,2019,198:1-28.

    • [17] WANG Y P,ZHANG S C,WANG F Y,et al.Thermal cracking history by laboratory kinetic simulation of Paleozoic oil in Eastern Tarim Basin,NW China:implications for the occurrence of residual oil reservoirs[J].Organic Geochemistry,2006,37:1803-1815.

    • [18] 赵文智,朱光有,苏劲,等.中国海相油气多期充注与成藏聚集模式研究:以塔里木盆地轮古东地区为例[J].岩石学报,2012,28(3):709-721.ZHAO Wenzhi,ZHU Guangyou,SU Jin,et al.Study on the multi-stage charging and accumulation model of Chinese marine petroleum:example from eastern Lungu area in the Tarim Basin[J].Acta Petrologica Sinica,2012,28(3):709-721.

    • [19] 房启飞,张鼐,张宝收,等.塔里木盆地轮古东地区奥陶系储层流体包裹体研究及油气成藏史[J].天然气地球科学,2014,25(10):1558-1567.FANG Qifei,ZHANG Nai,ZHANG Baoshou,et al.Characteristics of hydrocarbon inclusions and geological age of hydrocarbon accumulation in Ordovician reservoir of Eastern Lungu Area,Tarim Basin[J].Natural Gas Geoscience,2014,25(10):1558-1567.

    • [20] LIU Q Y,JIN Z J,LI H L,et al.Geochemistry characteristics and genetic types of natural gas in central part of the Tarim Basin,NW China[J].Marine & Petroleum Geology,2017,89:91-105.

    • [21] CONG F Y,TIAN J Q,HAO F,et al.Calcite U-Pb ages constrain petroleum migration pathways in tectonic complex basins[J].Geology,2022,50:644-649.

    • [22] LI S M,SHI Q,PANG X Q,et al.Origin of the unusually high dibenzothiophene oils in Tazhong-4 Oilfield of Tarim Basin and its implication in deep petroleum exploration[J].Organic Geochemistry,2012,48:56-80.

    • [23] 乔俊程,常少英,曾溅辉,等.塔里木盆地北部富满地区超深层走滑断裂带碳酸盐岩油气差异成藏成因探讨[J].石油与天然气地质,2024,45(5):1226-1246.QIAO Juncheng,CHANG Shaoying,ZENG Jianhui,et al.Origin of differential hydrocarbon accumulation in ultra-deep carbonate reservoirs along strike-slip fault zones in the Fuman area,northern Tarim Basin[J].Oil & Gas Geology,2024,45(5):1226-1246.

    • [24] 曹自成,云露,漆立新,等.塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J].石油与天然气地质,2024,45(2):341-356.CAO Zicheng,YUN Lu,QI Lixin,et al.A major discovery of hydrocarbon-bearing layers over 1000-meter thick in well Shunbei 84X,Shunbei area,Tarim Basin and its implications[J].Oil & Gas Geology,2024,45(2):341-356.

    • [25] 杨海军,张银涛,关宝珠,等.塔里木盆地哈拉哈塘奥陶系缝洞型碳酸盐岩油田的勘探发现与评价探明[J].海相油气地质,2023,28(2):113-122.YANG Haijun,ZHANG Yintao,GUAN Baozhu,et al.Exploration and development of the Ordovician carbonate oil field in Halahatang,Tarim Basin[J].Marine Origin Petroleum Geology,2023,28(2):113-122.

    • [26] 关晓东,郭磊.深层—超深层油气成藏研究新进展及展望[J].石油实验地质,2023,45(2):203-209.GUAN Xiaodong,GUO Lei.New progress and prospect of oil and gas accumulation research in deep to ultra-deep strata[J].Petroleum Geology & Experiment,2023,45(2):203-209.

    • [27] 漆立新,丁勇.塔里木盆地顺北地区东西部海相油气成藏差异[J].石油实验地质,2023,45(1):20-28.QI Lixin,DING Yong.Differences in marine hydrocarbon accumulation between the eastern and western parts of Shunbei area,Tarim Basin[J].Petroleum Geology & Experiment,2023,45(1):20-28.

    • [28] 杨海军,郝芳,韩剑发,等.塔里木盆地轮南低凸起断裂系统与复式油气聚集[J].地质科学,2007,42(4):795-811.YANG Haijun,HAO Fang,HAN Jianfa,et al.Fault systems and multiple oil-gas accumulation play of the Lunnan lower uplift,Tarim basin[J].Chinese Journal of Geology,2007,42(4):795-811.

    • [29] ZHU G Y,CHEN F R,WANG M,et al.Discovery of the lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin,China[J].AAPG Bulletin,2018,102(10):2123-2151.

    • [30] 吴梅莲,刘永福,彭鹏,等.轮南古潜山走滑断裂特征及其对油气成藏的影响[J].断块油气田,2021,28(4):456-462.WU Meilian,LIU Yongfu,PENG Peng,et al.Characteristics of strike-slip faults in Lunnan buried hill and its influence on hydrocarbon accumulation[J].Fault-Block Oil & Gas Field,2021,28(4):456-462.

    • [31] DENG S,LI H L,ZHANG Z P,et al.Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J].AAPG Bulletin,2019,103(1):109-137.

    • [32] 邓尚,邱华标,刘大卫,等.克拉通内走滑断裂成因与控藏机制研究进展:以塔里木盆地北部为例[J].石油与天然气地质,2024,45(5):1211-1225.DENG Shang,QIU Huabiao,LIU Dawei,et al.Advances in research on the genetic mechanisms of intracratonic strike-slip fault system and their control on hydrocarbon accumulation:a case study of the northern Tarim Basin[J].Oil & Gas Geology,2024,45(5):1211-1225.

    • [33] 李凤磊,林承焰,张国印,等.塔北地区多期走滑断裂地球物理响应特征及精细识别[J].中国石油大学学报(自然科学版),2024,48(3):1-14.LI Fenglei,LIN Chengyan,ZHANG Guoyin,et al.Characteristics of geophysical response and fine identification of multistage strike-slip fault in Tabei area [J].Journal of China University of Petroleum(Edition of Natural Science),2024,48(3):1-14.

    • [34] ZHANG S C,HUANG H P,SU J,et al.Geochemistry of Palaeozoic marine oils from the Tarim Basin,NW China.Part 4:Paleobiodegradation and oil charge mixing[J].Organic Geochemistry,2014,67:41-57.

    • [35] JIA W L,XIAO Z Y,YU C L,et al.Molecular and isotopic compositions of bitumens in Silurian oil sands from the Tarim Basin,NW China:characterizing biodegradation and hydrocarbon charging in an old composite basin[J].Marine and Petroleum Geology,2010,27:13-25.

    • [36] CHEN Z H,CHAI Z,CHENG B,et al.Geochemistry of high-maturity crude oil and gas from deep reservoirs and their geological significance:a case study on Shuntuoguole low uplift,Tarim Basin,western China[J].AAPG Bulletin,2021,105(1):65-107.

    • [37] LIU X,TIAN J Q,HAO F,et al.The generation mechanism of deep natural gas in Tabei uplift,Tarim Basin,Northwest China:insights from instantaneous and accumulative effects[J].Petroleum Science,2024,21(6):3804-3814.

    • [38] 韩鹏远,丁文龙,杨德彬,等.塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J].石油与天然气地质,2024,45(3):770-786.HAN Pengyuan,DING Wenlong,YANG Debin,et al.Characteristics of the S80 strike-slip fault zone and its controlling effects on the Ordovician reservoirs in the Tahe oilfield,Tarim Basin[J].Oil & Gas Geology,2024,45(3):770-786.

    • [39] 韩杰,袁源,洪涛,等.轮古东走滑断裂破碎带结构及与油气关系[J].中国地质,2016,43(4):1304-1316.HAN Jie,YUAN Yuan,HONG Tao,et al.The structure of crushed zone near the Lungudong strike slip fault and its relationship with the gas and oil[J].Geology in China,2016,43(4):1304-1316.

    • [40] 李洪辉,曹颖辉,陈志勇,等.塔里木盆地塔北隆起轮南低凸起断裂与深层油气勘探[J].天然气地球科学,2020,31(12):1677-1686.LI Honghui,CAO Yinghui,CHEN Zhiyong,et al.The faults and deep petroleum exploration in the Lunnan lower uplift of the Tabei rise,Tarim Basin[J].Natural Gas Geoscience,2020,31(12):1677-1686.

    • [41] 马德波,杨敏,杜德道,等.多期活动古隆起复合叠加过程解析:以塔里木盆地轮南古隆起为例[J].岩石学报,2020,36(11):3523-3536.MA Debo,YANG Min,DU Dedao,et al.Analysis of the superposition process of multiphase active paleo-uplift:taking the Lunnan paleo-uplift in the Tarim Basin as an example[J].Acta Petrologica Sinica,2020,36(11):3523-3536.

    • [42] ZHU G Y,LI J F,CHI L X,et al.The influence of gas invasion on the composition of crude oil and the controlling factors for reservoir fluid phase[J].Energy & Fuels,2020,34:2710-2725.

    • [43] ZHANG Z Y,ZHU G Y,ZHANG Y J,et al.The origin and accumulation of multi-phase reservoirs in the east Tabei Uplift,Tarim Basin,China[J].Marine and Petroleum Geology,2018,98:533-553.

    • [44] 马海陇,蒋林,丁文龙,等.塔里木盆地兰尕与和田河断裂带变形特征及成藏演化模式[J].石油与天然气地质,2024,45(5):1259-1274.MA Hailong,JIANG Lin,DING Wenlong,et al.Deformation characteristics and hydrocarbon accumulation models of the Lan'ga and Hotan River fault zones in the Tarim Basin[J].Oil & Gas Geology,2024,45(5):1259-1274.

  • 参考文献

    • [1] ZHU G Y,ZHANG B T,YANG H J,et al.Origin of deep strata gas of Tazhong in Tarim Basin,China[J].Organic Geochemistry,2014,74:85-97.

    • [2] 杨海军,陈永权,田军,等.塔里木盆地轮探1井超深层油气勘探重大发现与意义[J].中国石油勘探,2020,25(2):62-72.YANG Haijun,CHEN Yongquan,TIAN Jun,et al.Great discovery and its signicance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J].China Petroleum Exploration,2020,25(2):62-72.

    • [3] 王清华,徐振平,张荣虎,等.塔里木盆地油气勘探新领域、新类型及资源潜力[J].石油学报,2024,45(1):15-32.WANG Qinghua,XU Zhenping,ZHANG Ronghu,et al.New fields,new types of hydrocarbon explorations and their resource potentials in Tarim Basin[J].Acta Petrolei Sinica,2024,45(1):15-32.

    • [4] CONG F Y,TIAN J Q,HAO F,et al.A thermal pulse induced by a permian mantle plume in the Tarim Basin,Northwest China:constraints from clumped isotope thermometry and in situ calcite U-Pb dating[J].Journal of Geophysical Research:Solid Earth,2021,126(4):e2020JB020636.

    • [5] 朱光有,李婧菲,张志遥.深层油气相态多样性成因与次生地球化学作用强度评价:以塔里木盆地海相油气为例[J/OL].地球科学,2021:1-17(2021-11-09)[2024-10-05]https://kns.cnki.net/kcms/detail/42.1874.P.20211108.1622.004.html.ZHU Guangyou,LI Jingfei,ZHANG Zhiyao,et al.Origin of deep oil and gas phase state diversity and evaluation of secondary geochemical intensity:a case study of marine oil and gas in Tarim Basin[J/OL].Earth Science,2021:1-17(2021-11-09)[2024-10-05] https://kns.cnki.net/kcms/detail/42.1874.P.20211108.1622.004.html.

    • [6] LI M,CHEN Z,YI S.Origin and accumulation mechanisms of deep paleozoic oil and gas:a case study of the central Tarim Basin,western China[J].Journal of Petroleum Science & Engineering,2022,208:109634.

    • [7] 张科,苏劲,陈永权,等.塔里木盆地寒武系—奥陶系烃源岩油源特征与超深层油气来源[J].地质学报,2023,97(6):2026-2041.ZHANG Ke,SU Jin,CHEN Yongquan,et al.The biogeochemical features of the Cambrian-Ordovician source rocks and origin of ultra-deep hydrocarbons in the Tarim Basin[J].Chinese Journal of Geology,2023,97(6):2026-2041.

    • [8] 贾承造.含油气盆地深层—超深层油气勘探开发的科学技术问题[J].中国石油大学学报(自然科学版),2023,47(5):1-12.JIA Chengzao.Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(5):1-12.

    • [9] 杨德彬,鲁新便,鲍典,等.塔里木盆地北部奥陶系海相碳酸盐岩断溶体油藏成因类型及特征再认识[J].石油与天然气地质,2024,45(2):357-366.YANG Debin,LU Xinbian,BAO Dian,et al.New insights into the genetic types and characteristics of the Ordovician marine fault-karst carbonate reservoirs in the northern Tarim Basin[J].Oil & Gas Geology,2024,45(2):357-366.

    • [10] WANG X M,ZHANG S C.Petroleum characteristics and controlling factors in Lunnan low uplift,Tarim Basin[J].Journal of Earth Science,2010,21(2):236-246.

    • [11] 吴楠,蔡忠贤,杨海军.塔河-轮南地区奥陶系油气充注史的综合厘定[J].中国科学:地球科学,2013,43(9):1445-1455.WU Nan,CAI Zhongxian,YANG Haijun,et al.Hydrocarbon charging of the Ordovician reservoirs in Tahe-Lunnan area,China[J].Science China:Earth Sciences,2013,43(9):1445-1455.

    • [12] CHEN J Q,MA K Y,PANG X Q,et al.Secondary migration of hydrocarbons in Ordovician carbonate reservoirs in the Lunnan area,Tarim Basin[J].Journal of Petroleum Science and Engineering,2020,188:106962.

    • [13] ZHANG Z Y,WANG H,ZHU G Y,et al.Phase fractionation and oil mixing as contributors to complex petroleum phase in deep strata:a case study from LG7 block in the Tarim Basin,China[J].Marine and Petroleum Geology,2022,140:105660.

    • [14] 潘文庆,赵孟军,张宝民,等.塔里木盆地轮西地区奥陶系潜山油藏:一个海西期充注并降解的稠油油藏成藏实例分析[J].地质科学,2008,43(2):321-332.PAN Wenqing,ZHAO Mengjun,ZHANG Baomin,et al.Ordovician buried hill oilfield in western Lunnan area:an example of heavy oilfield formation for hydrocarbon charging and degrading in Hercynian period[J].Chinese Journal of Geology,2008,43(2):321-332.

    • [15] 张水昌,朱光有,杨海军,等.塔里木盆地北部奥陶系油气相态及其成因分析[J].岩石学报,2011,27(8):2447-2460.ZHANG Shuichang,ZHU Guangyou,YANG Haijun,et al.The phases of Ordovician hydrocarbon and their origin in the Tabei uplift,Tarim Basin[J].Acta Petrologica Sinica,2011,27(8):2447-2460.

    • [16] ZHU G Y,ZHANG Z Y,ZHOU X X,et al.The complexity,secondary geochemical process,genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin,China[J].Earth-Science Reviews,2019,198:1-28.

    • [17] WANG Y P,ZHANG S C,WANG F Y,et al.Thermal cracking history by laboratory kinetic simulation of Paleozoic oil in Eastern Tarim Basin,NW China:implications for the occurrence of residual oil reservoirs[J].Organic Geochemistry,2006,37:1803-1815.

    • [18] 赵文智,朱光有,苏劲,等.中国海相油气多期充注与成藏聚集模式研究:以塔里木盆地轮古东地区为例[J].岩石学报,2012,28(3):709-721.ZHAO Wenzhi,ZHU Guangyou,SU Jin,et al.Study on the multi-stage charging and accumulation model of Chinese marine petroleum:example from eastern Lungu area in the Tarim Basin[J].Acta Petrologica Sinica,2012,28(3):709-721.

    • [19] 房启飞,张鼐,张宝收,等.塔里木盆地轮古东地区奥陶系储层流体包裹体研究及油气成藏史[J].天然气地球科学,2014,25(10):1558-1567.FANG Qifei,ZHANG Nai,ZHANG Baoshou,et al.Characteristics of hydrocarbon inclusions and geological age of hydrocarbon accumulation in Ordovician reservoir of Eastern Lungu Area,Tarim Basin[J].Natural Gas Geoscience,2014,25(10):1558-1567.

    • [20] LIU Q Y,JIN Z J,LI H L,et al.Geochemistry characteristics and genetic types of natural gas in central part of the Tarim Basin,NW China[J].Marine & Petroleum Geology,2017,89:91-105.

    • [21] CONG F Y,TIAN J Q,HAO F,et al.Calcite U-Pb ages constrain petroleum migration pathways in tectonic complex basins[J].Geology,2022,50:644-649.

    • [22] LI S M,SHI Q,PANG X Q,et al.Origin of the unusually high dibenzothiophene oils in Tazhong-4 Oilfield of Tarim Basin and its implication in deep petroleum exploration[J].Organic Geochemistry,2012,48:56-80.

    • [23] 乔俊程,常少英,曾溅辉,等.塔里木盆地北部富满地区超深层走滑断裂带碳酸盐岩油气差异成藏成因探讨[J].石油与天然气地质,2024,45(5):1226-1246.QIAO Juncheng,CHANG Shaoying,ZENG Jianhui,et al.Origin of differential hydrocarbon accumulation in ultra-deep carbonate reservoirs along strike-slip fault zones in the Fuman area,northern Tarim Basin[J].Oil & Gas Geology,2024,45(5):1226-1246.

    • [24] 曹自成,云露,漆立新,等.塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J].石油与天然气地质,2024,45(2):341-356.CAO Zicheng,YUN Lu,QI Lixin,et al.A major discovery of hydrocarbon-bearing layers over 1000-meter thick in well Shunbei 84X,Shunbei area,Tarim Basin and its implications[J].Oil & Gas Geology,2024,45(2):341-356.

    • [25] 杨海军,张银涛,关宝珠,等.塔里木盆地哈拉哈塘奥陶系缝洞型碳酸盐岩油田的勘探发现与评价探明[J].海相油气地质,2023,28(2):113-122.YANG Haijun,ZHANG Yintao,GUAN Baozhu,et al.Exploration and development of the Ordovician carbonate oil field in Halahatang,Tarim Basin[J].Marine Origin Petroleum Geology,2023,28(2):113-122.

    • [26] 关晓东,郭磊.深层—超深层油气成藏研究新进展及展望[J].石油实验地质,2023,45(2):203-209.GUAN Xiaodong,GUO Lei.New progress and prospect of oil and gas accumulation research in deep to ultra-deep strata[J].Petroleum Geology & Experiment,2023,45(2):203-209.

    • [27] 漆立新,丁勇.塔里木盆地顺北地区东西部海相油气成藏差异[J].石油实验地质,2023,45(1):20-28.QI Lixin,DING Yong.Differences in marine hydrocarbon accumulation between the eastern and western parts of Shunbei area,Tarim Basin[J].Petroleum Geology & Experiment,2023,45(1):20-28.

    • [28] 杨海军,郝芳,韩剑发,等.塔里木盆地轮南低凸起断裂系统与复式油气聚集[J].地质科学,2007,42(4):795-811.YANG Haijun,HAO Fang,HAN Jianfa,et al.Fault systems and multiple oil-gas accumulation play of the Lunnan lower uplift,Tarim basin[J].Chinese Journal of Geology,2007,42(4):795-811.

    • [29] ZHU G Y,CHEN F R,WANG M,et al.Discovery of the lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin,China[J].AAPG Bulletin,2018,102(10):2123-2151.

    • [30] 吴梅莲,刘永福,彭鹏,等.轮南古潜山走滑断裂特征及其对油气成藏的影响[J].断块油气田,2021,28(4):456-462.WU Meilian,LIU Yongfu,PENG Peng,et al.Characteristics of strike-slip faults in Lunnan buried hill and its influence on hydrocarbon accumulation[J].Fault-Block Oil & Gas Field,2021,28(4):456-462.

    • [31] DENG S,LI H L,ZHANG Z P,et al.Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J].AAPG Bulletin,2019,103(1):109-137.

    • [32] 邓尚,邱华标,刘大卫,等.克拉通内走滑断裂成因与控藏机制研究进展:以塔里木盆地北部为例[J].石油与天然气地质,2024,45(5):1211-1225.DENG Shang,QIU Huabiao,LIU Dawei,et al.Advances in research on the genetic mechanisms of intracratonic strike-slip fault system and their control on hydrocarbon accumulation:a case study of the northern Tarim Basin[J].Oil & Gas Geology,2024,45(5):1211-1225.

    • [33] 李凤磊,林承焰,张国印,等.塔北地区多期走滑断裂地球物理响应特征及精细识别[J].中国石油大学学报(自然科学版),2024,48(3):1-14.LI Fenglei,LIN Chengyan,ZHANG Guoyin,et al.Characteristics of geophysical response and fine identification of multistage strike-slip fault in Tabei area [J].Journal of China University of Petroleum(Edition of Natural Science),2024,48(3):1-14.

    • [34] ZHANG S C,HUANG H P,SU J,et al.Geochemistry of Palaeozoic marine oils from the Tarim Basin,NW China.Part 4:Paleobiodegradation and oil charge mixing[J].Organic Geochemistry,2014,67:41-57.

    • [35] JIA W L,XIAO Z Y,YU C L,et al.Molecular and isotopic compositions of bitumens in Silurian oil sands from the Tarim Basin,NW China:characterizing biodegradation and hydrocarbon charging in an old composite basin[J].Marine and Petroleum Geology,2010,27:13-25.

    • [36] CHEN Z H,CHAI Z,CHENG B,et al.Geochemistry of high-maturity crude oil and gas from deep reservoirs and their geological significance:a case study on Shuntuoguole low uplift,Tarim Basin,western China[J].AAPG Bulletin,2021,105(1):65-107.

    • [37] LIU X,TIAN J Q,HAO F,et al.The generation mechanism of deep natural gas in Tabei uplift,Tarim Basin,Northwest China:insights from instantaneous and accumulative effects[J].Petroleum Science,2024,21(6):3804-3814.

    • [38] 韩鹏远,丁文龙,杨德彬,等.塔里木盆地塔河油田S80走滑断裂发育特征及其对奥陶系储层的控制作用[J].石油与天然气地质,2024,45(3):770-786.HAN Pengyuan,DING Wenlong,YANG Debin,et al.Characteristics of the S80 strike-slip fault zone and its controlling effects on the Ordovician reservoirs in the Tahe oilfield,Tarim Basin[J].Oil & Gas Geology,2024,45(3):770-786.

    • [39] 韩杰,袁源,洪涛,等.轮古东走滑断裂破碎带结构及与油气关系[J].中国地质,2016,43(4):1304-1316.HAN Jie,YUAN Yuan,HONG Tao,et al.The structure of crushed zone near the Lungudong strike slip fault and its relationship with the gas and oil[J].Geology in China,2016,43(4):1304-1316.

    • [40] 李洪辉,曹颖辉,陈志勇,等.塔里木盆地塔北隆起轮南低凸起断裂与深层油气勘探[J].天然气地球科学,2020,31(12):1677-1686.LI Honghui,CAO Yinghui,CHEN Zhiyong,et al.The faults and deep petroleum exploration in the Lunnan lower uplift of the Tabei rise,Tarim Basin[J].Natural Gas Geoscience,2020,31(12):1677-1686.

    • [41] 马德波,杨敏,杜德道,等.多期活动古隆起复合叠加过程解析:以塔里木盆地轮南古隆起为例[J].岩石学报,2020,36(11):3523-3536.MA Debo,YANG Min,DU Dedao,et al.Analysis of the superposition process of multiphase active paleo-uplift:taking the Lunnan paleo-uplift in the Tarim Basin as an example[J].Acta Petrologica Sinica,2020,36(11):3523-3536.

    • [42] ZHU G Y,LI J F,CHI L X,et al.The influence of gas invasion on the composition of crude oil and the controlling factors for reservoir fluid phase[J].Energy & Fuels,2020,34:2710-2725.

    • [43] ZHANG Z Y,ZHU G Y,ZHANG Y J,et al.The origin and accumulation of multi-phase reservoirs in the east Tabei Uplift,Tarim Basin,China[J].Marine and Petroleum Geology,2018,98:533-553.

    • [44] 马海陇,蒋林,丁文龙,等.塔里木盆地兰尕与和田河断裂带变形特征及成藏演化模式[J].石油与天然气地质,2024,45(5):1259-1274.MA Hailong,JIANG Lin,DING Wenlong,et al.Deformation characteristics and hydrocarbon accumulation models of the Lan'ga and Hotan River fault zones in the Tarim Basin[J].Oil & Gas Geology,2024,45(5):1259-1274.