en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘昕(1974-),女,副教授,博士,研究方向为数据挖掘、机器学习等。E-mail: lx@upc.edu.cn。

通信作者:

刘昕(1974-),女,副教授,博士,研究方向为数据挖掘、机器学习等。E-mail: lx@upc.edu.cn。

中图分类号:TP 391.41

文献标识码:A

文章编号:1673-5005(2025)04-0001-10

DOI:10.3969/j.issn.1673-5005.2025.04.001

参考文献 1
宋璠,侯加根,张震,等.利用测井曲线研究陆相湖泊沉积微相[J].测井技术,2009,33(6):589-592.SONG Fan,HOU Jiagen,ZHANG Zhen,et al.Application of log curves in indicating sedimentary micro-facies of lake facies basins[J].Well Logging Technology,2009,33(6):589-592.
参考文献 2
袁士义,王强.中国油田开发主体技术新进展与展望[J].石油勘探与开发,2018,45(4):657-668.YUAN Shiyi,WANG Qiang.New progress and prospects of main technologies for oilfield development in China[J].Petroleum Exploration and Development,2018,45(4):657-668.
参考文献 3
贾承造,庞雄奇,姜福杰.中国油气资源研究现状与发展方向[J].石油科学通报,2016,1(1):2-23.JIA Chengzao,PANG Xiongqi,JIANG Fujie.Current status and development direction of oil and gas resources research in China[J].Petroleum Science Bulletin,2016,1(1):2-23.
参考文献 4
张本健,钟原,周刚,等.四川盆地中部蓬莱地区灯二段沉积微相演化及气藏综合评价[J].海相油气地质,2023,28(1):1-10.ZHANG Benjian,ZHONG Yuan,ZHOU Gang,et al.Sedimentary microfacies evolution and comprehensive evaluation of gas reservoir of the Dengying Member 2 in Penglai Area,central Sichuan Basin[J].Marine Origin Petroleum Geology,2023,28(1):1-10.
参考文献 5
黄继新,徐芳,齐梅,等.巴西M油田白垩系湖相碳酸盐岩沉积相类型及分布[J].海相油气地质,2023,28(1):45-54.HUANG Jixin,XU Fang,QI Mei,et al.Types and distribution of sedimentary facies of the Cretaceous carbonate reservoirs in the M Oilfield of Santos Basin,Brazil[J].Marine Origin Petroleum Geology,2023,28(1):45-54.
参考文献 6
何利,刘建清,隆轲,等.川西北地区中三叠统雷口坡组沉积相再认识[J].海相油气地质,2023,28(4):371-380.HE Li,LIU Jianqing,LONG Ke,et al.New understanding of sedimentary facies of the Middle Triassic Leikoupo Formation in northwestern Sichuan Basin[J].Marine Origin Petroleum Geology,2023,28(4):371-380.
参考文献 7
穆晓亮,常少英,牛花朋,等.断陷湖盆中深层砂体地震沉积学研究:以南堡凹陷老爷庙地区东三上亚段为例[J].海相油气地质,2024,29(3):327-336.MU Xiaoliang,CHANG Shaoying,NIU Huapeng,et al.Study on seismic sedimentology of middle-deep sand bodies in faulted lacustrine basin:taking the upper third member of Dongying Formation in Laoyemiao area of Nanpu Sag as an example[J].Marine Origin Petroleum Geology,2024,29(3):327-336.
参考文献 8
姜锐,赵靖舟,陈宇航.苏里格气田苏西区储层地质建模[J].西安石油大学学报(自然科学版),2020,35(3):10-17.JIANG Rui,ZHAO Jingzhou,CHEN Yuhang.Geological modeling of reservoirs in Suxi area of Sulige gas field[J].Journal of Xi'an Shiyou University(Natural Science Edition),2020,35(3):10-17.
参考文献 9
王佳琦,邢瑶.应用序贯指示模拟方法建立三维地质模型:以靖安油田盘古梁油藏为例[J].云南化工,2019,46(9):146-149.WANG Jiaqi,XING Yao.Application of sequential indicator simulation method to establish a three-dimensional geological model:taking the Panguliang oil reservoir in Jing'an Oilfield as an example[J].Yunnan Chemical Industry,2019,46(9):146-149.
参考文献 10
贺婷婷,谈心,段太忠,等.综合沉积正演与多点地质统计模拟辫状河三角洲:以塔河T区为例[J].地质科技通报,2021,40(3):54-66.HE Tingting,TAN Xin,DUAN Taizhong,et al.Comprehensive sedimentary forward modeling and multi-point geological statistical simulation of braided river delta:a case study of Tahe T area[J].Geological Science and Technology Bulletin,2021,40(3):54-66.
参考文献 11
丁芳,陆嫣,段冬平,等.多点地质统计学建模方法在复杂叠置样式砂体表征中的应用[J].复杂油气藏,2017,10(1):34-38.DING Fang,LU Yan,DUAN Dongping,et al.Complex superimposition type sandbody characterized by multiple-point geostatistics modeling method[J].Complex Hydrocarbon Reservoirs,2017,10(1):34-38.
参考文献 12
王立鑫,尹艳树,冯文杰,等.多点地质统计学中训练图像优选方法及其在地质建模中的应用[J].石油勘探与开发,2019,46(4):703-709.WANG Lixin,YIN Yanshu,FENG Wenjie,et al.Training image optimization method in multipoint geostatistics and its application in geological modeling[J].Petroleum Exploration and Development,2019,46(4):703-709.
参考文献 13
付超,谢玉洪,宋来明,等.基于沉积模拟的虚拟井建立与深水峡谷相控建模策略:以琼东南盆地中央峡谷陵水段为例[J].海相油气地质,2023,28(4):413-424.FU Chao,XIE Yuhong,SONG Laiming,et al.Pseudo-well setting and strategy of facies-controlled reservoir modeling of deep water canyon based on sedimentary simulation:taking the Lingshui section of the Central Canyon in Qiongdongnan Basin as an example[J].Marine Origin Petroleum Geology,2023,28(4):413-424.
参考文献 14
赖泽武,黄沧佃,彭仕宓.储层结构目标建模程序MOD_OBJ及其应用[J].石油大学学报(自然科学版),2001,25(1):63-66.LAI Zewu,HUANG Cangdian,PENG Shimi.Reservoir structure target modeling program MOD_ OBJ and its applications[J].Journal of the University of Petroleum,China(Edition of Natural Science),2001,25(1):63-66.
参考文献 15
李少华,卢昌盛,何维领,等.一种基于目标的非贯穿型河道建模方法[J].天然气地球科学,2019,30(3):305-311.LI Shaohua,LU Changsheng,HE Weiling,et al.An object-based modeling method for channels not across through interesting area[J].Natural Gas Geoscience,2019,30(3):305-311.
参考文献 16
尹楠鑫,张吉,李存贵,等.改进的基于目标的高精度沉积微相建模方法在苏14加密实验区的应用[J].成都理工大学学报(自然科学版),2017,44(1):76-85.YIN Nanxin,ZHANG Ji,LI Cungui,et al.Application of an improved target based high-precision sedimentary microfacies modeling method in the Su 14 encryption experimental area[J].Journal of Chengdu University of Technology(Natural Science Edition),2017,44(1):76-85.
参考文献 17
王珂,张荣虎,李宝刚,等.致密砂岩储层构造裂缝特征及地质建模:以塔里木盆地库车坳陷大北12气藏为例[J].海相油气地质,2023,28(1):72-82.WANG Ke,ZHANG Ronghu,LI Baogang,et al.Characteristics and geological modeling of structural fractures in tight sandstone reservoir:taking Dabei-12 gas reservoir in Kuqa Depression,Tarim Basin as an example[J].Marine Origin Petroleum Geology,2023,28(1):72-82.
参考文献 18
李晓光,张焕芝,徐海云,等.2022石油地球物理勘探技术进展[J].世界石油工业,2023,30(3):24-31.LI Xiaoguang,ZHANG Huanzhi,XU Haiyun,et al.Progress of petroleum geophysical technologies in 2022[J].World Petroleum Industry,2023,30(3):24-31.
参考文献 19
王天云,韩小锋,许海红,等.无监督神经网络地震属性聚类方法在沉积相研究中的应用[J].石油地球物理勘探,2021,56(2):372-379,215.WANG Tianyun,HAN Xiaofeng,XU Haihong,et al.Application of unsupervised neural network seismic attribute clustering method in sedimentary facies research[J].Petroleum Geophysical Exploration,2021,56(2):372-379,215.
参考文献 20
孟欣然,梁堰波,孟宪海,等.基于FILTERSIM算法的油藏沉积微相模拟研究[J].计算机工程与设计,2013,34(2):545-549.MENG Xinran,LIANG Yanbo,MENG Xianhai,et al.Study on reservoir sedimentary microfacies simulation based on the FILTERSIM algorithm[J].Computer Engineering and Design,2013,34(2):545-549.
参考文献 21
王喜鑫,倪雪儿,李少华,等.基于深度学习地震多属性融合的海上少井条件下河道型砂体构型解释:以西湖凹陷X气田为例[J].海相油气地质,2023,28(3):261-268.WANG Xixin,NI Xueer,LI Shaohua,et al.Architecture interpretation of channel sand body under offshore few well conditions based on deep learning seismic multi-attributes fusion:a case of X gas field in Xihu Sag,Donghai Shelf Basin[J].Marine Origin Petroleum Geology,2023,28(3):261-268.
参考文献 22
王凯,刘东成,刘华峰,等.基于FCM算法的多属性分析技术在河道砂体精细刻画中的应用:以西湖凹陷T气田为例[J].海洋地质前沿,2023,39(9):55-67.WANG Kai,LIU Dongcheng,LIU Huafeng,et al.Application of multi-attribute analysis technology based on FCM algorithm in fine characterization of river sand bodies:a case study of T gas field in Xihu Depression[J].Frontiers of Marine Geology,2023,39(9):55-67.
参考文献 23
GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[J].Advances in Neural Information Processing Systems,2014,27(1):2672-2680.
参考文献 24
周嵘,吴朝东,张亚楠.基于生成对抗网络的砂岩薄片图像视野外重建[J].北京大学学报(自然科学版),2023,59(2):231-241.ZHOU Rong,WU Chaodong,ZHANG Yanan.Outpainting reconstruction of sandstone thin-section image based on generative adversarial network[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2023,59(2):231-241.
参考文献 25
程国建,张福临.基于SinGAN的岩石薄片图像超分辨率重建[J].西安石油大学学报(自然科学版),2021,36(2):116-121.CHENG Guojian,ZHANG Fulin.Super-resolution reconstruction of rock slice image based on SinGAN[J].Journal of Xi'an Shiyou University(Natural Science Edition),2021,36(2):116-121.
参考文献 26
李刚,张亚兵,杨庆贺,等.基于Real-ESRGAN的岩石CT图像超分辨率重建[J].工矿自动化,2023,49(11):84-91.LI Gang,ZHANG Yabing,YANG Qinghe,et al.Super resolution reconstruction of rock CT images based on Real-ESRGAN[J].Industrial and Mining Automation,2023,49(11):84-91.
参考文献 27
韩建光,王卿,许媛,等.基于A-CGAN的深反射地震数据随机噪声压制方法研究[J].地质论评,2024,70(1):228-238.HAN Jianguang,WANG Qing,XU Yuan,et al.Research on random noise suppression method for deep reflection seismic data based on A-CGAN[J].Geological Review,2024,70(1):228-238.
参考文献 28
张一,丁仁伟,赵硕,等.基于改进环形生成对抗网络的浅地层剖面去噪方法[J].CT理论与应用研究,2023,32(1):15-25.ZHANG Yi,DING Renwei,ZHAO Shuo,et al.A shallow profile denoising method based on an improved circular generative adversarial network[J].CT Theory and Application Research,2023,32(1):15-25.
参考文献 29
吴学锋,张会星.基于循环一致性生成对抗网络的地震数据随机噪声压制方法[J].石油地球物理勘探,2021,56(5):958-968,923-924.WU Xuefeng,ZHANG Huixing.Random noise suppression method for seismic data based on cyclic consistency generative adversarial networks[J].Petroleum Geophysical Exploration,2021,56(5):958-968,923-924.
参考文献 30
杨永飞,刘夫贵,姚军,等.基于生成对抗网络的页岩三维数字岩心构建[J].西南石油大学学报(自然科学版),2021,43(5):73-83.YANG Yongfei,LIU Fugui,YAO Jun,et al.Construction of shale 3D digital core based on generative adversarial networks[J].Journal of Southwest Petroleum University(Natural Science Edition),2021,43(5):73-83.
参考文献 31
MOSSER L,DUBRULE O,BLUNT M J.Reconstruction of three-dimensional porous media using generative adversarial neural networks[J].Physical Review E,2017,96(4):043309.
参考文献 32
ZHA W,LI X,LI D,et al.Shale digital core image generation based on generative adversarial networks[J].Journal of Energy Resources Technology,2021,143(3):033003.
参考文献 33
LALOY E,HÉRAULT R,JACQUES D,et al.Training-image based geostatistical inversion using a spatial generative adversarial neural network[J].Water Resources Research,2018,54(1):381-406.
参考文献 34
NESVOLD E,MUKERJI T.Simulation of fluvial patterns with GANs trained on a data set of satellite imagery[J].Water Resources Research,2021,57(5):e2019WR025787.
参考文献 35
SONG S,MUKERJI T,HOU J.Geological facies modeling based on progressive growing of generative adversarial networks(GANs)[J].Computational Geosciences,2021,25:1251-1273.
参考文献 36
GAO X,HE W,HU Y.Modeling of meandering river deltas based on the conditional generative adversarial network[J].Journal of Petroleum Science and Engineering,2020,193:107352.
参考文献 37
FAN W,LIU G,CHEN Q,et al.Geological model automatic reconstruction based on conditioning Wasserstein generative adversarial network with gradient penalty[J].Earth Science Informatics,2023,16(3):2825-2843.
参考文献 38
胡勇,高小洋,何文祥,等.利用条件生成对抗网络建立曲流河地质模型[J].沉积学报,2022,42(1):201-218.HU Yong,GAO Xiaoyang,HE Wenxiang,et al.Establishing a geological model of meandering rivers using conditional generative adversarial networks[J].Journal of Sedimentology,2022,42(1):201-218.
参考文献 39
王艳松,申晓阳,李强,等.基于PCA-GRD-LWR模型的海上油田中长期最大电力负荷预测[J].中国石油大学学报(自然科学版),2023,47(2):129-135.WANG Yansong,SHEN Xiaoyang,LI Qiang,et al.Long term maximum power load prediction of offshore oil fields based on PCA-GRD-LWR model[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(2):129-135.
参考文献 40
LIU Y G,GAO P,LAN D,et al.ECA-SKNet:convolutional neural network recognition model for maize haploid seeds[J].Journal of University of Electronic Science and Technology of China,2023,52(6):866-871.
目录contents

    摘要

    由于地层结构的复杂性和强非均质性,同时受到测井、岩心、试油等数据不足的影响,现有沉积微相建模方法难以实现精确建模。提出一种基于条件生成对抗网络的沉积微相建模方法,采用灰色关联分析算法,计算各地震属性与砂地比的灰色关联度,挖掘对砂地比参数关联性较强的参数;将优选地震属性图像作为卷积神经网络模型的输入,构建砂地比预测模型,可视化砂地比预测结果,与井相图作为联合约束条件,训练条件生成对抗网络,构建沉积微相生成模型,实现沉积微相的精确建模。应用本方法对东部某油田进行沉积微相建模研究。结果表明,条件生成对抗网络沉积微相模型能精确刻画复杂地质模式,井点吻合率达到94.1%。

    Abstract

    Due to the complexity and strong heterogeneity of stratigraphic structure, as well as the limited availability of logging, core, and oil testing data, existing sedimentary microfacies modeling methods struggle to achieve accurate results. To address this challenge, a new modeling approach based on conditional generative adversarial networks (cGANs) was proposed. This method utilizes grey correlation analysis to calculate the degree of correlation between various seismic attributes and the sand-to-ground ratio, thereby identifying attributes with strong predictive relevance. These selected seismic attribute images are then used as inputs to a convolutional neural network, which is employed to construct a prediction model for the sand-to-ground ratio. The resulting predictions are visualized as a thermal map, which, combined with well log phase diagrams, serves as a joint constraint for training the generative adversarial network. Based on this, a sedimentary microfacies generation model is developed to enable accurate modeling of sedimentary microfacies. This method was applied to a case study of an oilfield in eastern China. The results demonstrate that the cGAN-based model can effectively capture complex geological patterns, achieving a well-point coincidence rate of 94.1%.

  • 沉积微相建模在油气田勘探和开发过程中扮演着重要的角色 [1],沉积微相的建模效果是影响油田开发至关重要的因素,尤其中国老油田逐渐进入了中后期开发阶段[2],油气资源大多分布在复杂、难开发的区域[3],且受到测井、岩心、试油等数据不足的影响,现有沉积微相建模方法[4-7]难以实现精确建模。因此剩余资源的开发则对储层沉积微相的精确建模提出了更高的要求。传统沉积微相建模方法主要包括序贯指示模拟方法[8-9]、多点地质统计学模拟方法[10-13]和基于目标的随机模拟方法[14-18]。多点地质统计学模拟方法虽然在模拟过程中考虑了非线性地质特征,但是由于训练图像平稳性问题会导致模型出现断裂或者不自然的过渡。序贯指示模拟方法通过逐步模拟地质模型的每个像元,从而逼近真实地质结构,但离散的像元表示可能导致对细节地质特征的捕捉不足。基于目标的随机模拟方法可以很好刻画复杂地质体几何形态,但随机性可能导致相邻地点模拟结果差异较大。随着人工智能算法研究的不断推进,以及地球物理与人工智能跨专业融合的日益深入,诸多学者应用机器学习和深度学习模型开展沉积微相建模工作。例如,王天云等[19]设计了一种无监督神经网络地震属性聚类方法,并应用到艾特格勒凹陷北次凹,得到较为准确的地震相-沉积相分析结果。孟欣然等[20]基于FILTERSIM算法实现对沉积相建模,对井数据较少的地质体建模效果较好。王喜鑫等[21]采用聚类分析地震属性融合与深度学习地震属性融合相结合的方法,对河流相储层进行砂体构型精细解释。王凯等[22]基于模糊C-均值算法的多属性聚类分析方法,并结合RGB多属性融合技术,建立了一种适用于少井区的沉积微相刻画方法。生成对抗网络(GAN)[23]作为一种先进的深度学习模型,可以很好地抽象并复现物体的空间模式特征。在岩石薄片图像重建[24-26]、地震数据去噪[27-29]、数字岩心重构[30-32]等领域有着成功的应用。多位学者将此方法应用于地质建模,根据有无条件约束分为无条件约束地质建模和有条件约束地质建模两种情况。无条件约束情况是指将原始生成对抗网络直接用于地质建模,例如Laloy等[33]训练生成对抗网络模型,生成与已有地质模型相似的河道相模型。Nesvold等[34]利用卫星图像训练生成对抗网络,生成逼真的河流三角洲沉积相图像。Song等[35]将生成对抗网络渐进增长的训练过程与地质建模相结合,形成了渐进增长生成对抗网络的河道相建模方法。但是无条件约束情况下仅学到地质模式知识,无法构建吻合给定条件数据的地质模型,因此基于条件生成对抗网络的地质建模方法被提出并研究,例如Gao等[36]以西湖坳陷西坡带蜿蜒河三角洲沉积区为例,提出了一种基于条件生成对抗网络的曲流江三角洲储层建模方法。Fan等[37]提出了具有梯度惩罚的 Wasserstein 生成对抗网络 (WGAN-GP),通过输入不同类型的条件数据实现地质模型重建。胡勇等[38]开展了基于条件生成对抗网络的曲流河建模研究,并建立满足曲流河复杂形态和井点数据的曲流河模型。但是这些方法都基于已有井相数据作为约束条件,忽略了全局地质特征对沉积微相模型的影响,因此笔者提出一种地震属性驱动的条件生成对抗网络沉积微相建模方法,采用灰色关联分析算法,挖掘对砂地比参数关联性较强的地震属性,优选地震属性图像作为卷积神经网络模型输入,得到砂地比预测结果并可视化成图,将局部特征(井相数据)和全局特征(砂地比)作为联合约束条件,训练条件生成对抗网络,学习沉积微相分布规律及约束条件与沉积微相之间的联系,生成更加精准可控的沉积微相图。

  • 1 方法原理

  • 1.1 基于灰色关联的敏感参数分析

  • 灰色关联分析(GRA)是一种研究多个因素之间的关联程度和相互影响的统计方法,其基本思想是通过计算两因素之间的关联度,来揭示各因素之间的关联程度。本文中采用灰色关联算法挖掘与砂地比参数关联性较强的地震属性,将砂地比序列设置为参考序列,将地震属性弧长、平均能量、均方根振幅、振幅峰度、振幅方差、平均瞬时相位、总绝对振幅等序列作为比较序列;对各地震属性数据进行标准化处理,消除参数间的量纲差异;计算砂地比与各地震属性之间的关联度,并基于关联度对地震属性进行排序,选择与砂地比参数具有高关联度的地震属性作为构建砂地比预测的参数。灰色关联度计算步骤[39]如下:

  • (1)确定分析序列。砂地比可表示为

  • Y=y(k),k=1,2,,n.
    (1)
  • 地震属性可表示为

  • Xi=xi(k),k=1,2,,n;i=1,2,,m.
    (2)
  • 式中,yk)为砂地比第k条样本数值;xik)为第i个地震属性的第k条样本数值;n为样本数;m为地震属性个数。

  • (2)对序列做无量纲化处理。各地震属性序列量纲差异过大,所以对各地震属性数据进行归一化处理,即

  • xi(k)=xi(k)-minXimaxXi-minXi,k=1,2,,n;i=1,2,,m.
    (3)
  • 式中,minXi为第i个地震属性序列的最小值;maxXi为第i个地震属性序列的最大值。

  • (3)求关联系数。

  • ξi(k)=Δmin+ρΔmaxΔi(k)+ρΔmax.
    (4)
  • 式中,Δmin和Δmax为俩分析序列中相邻元素之差的最小值和最大值;Δik)为第i个地震属性与砂地比参数的第k个相邻元素之差;ρ为分辨系数,0<ρ<1,一般取ρ=0.5。

  • (4)计算关联度。

  • ri=1nk=1n ξi(k),k=1,2,,n.
    (5)
  • 1.2 基于卷积神经网络的砂地比预测

  • 卷积神经网络[40]是一种深度前馈神经网络,通过卷积、池化及激活函数映射等操作,将原始输入图像抽象为更高层次的特征表示,学习输入数据复杂模式和关联关系,最后网络通过特征到目标的映射,完成对目标任务的有效学习和表达。基本架构通常由输入层、卷积层、池化层、全连接层及输出层组成。输入层是输入卷积神经网络的原始数据或者经过预处理后的数据;卷积层通过卷积操作使用卷积核与输入特征图进行卷积运算,提取特征图特征。

  • 池化层通过降采样的方式减小特征图空间维度,同时保留图像重要特征;全连接层将每个神经元都与前一层的所有神经元相连,实现全局特征信息的传递和整合;输出层通常跟随在全连接层之后,根据任务目标实现网络的最终输出。

  • 本文中将以井点为中心、小层平面6×6地震道范围的优选地震属性图像作为训练数据,将井位置处的砂地比数值作为训练标签,每条样本数据包含6个优选的地震属性图像和1个井点位置的砂地比数据。基于卷积神经网络实现小层砂地比数值预测,并将小层砂地比预测结果可视化成图,以约束沉积微相图的生成。设计的卷积神经网络架构如图1所示,由输入层、3层卷积层、3层池化层、1层全连接层和输出层构成。

  • 卷积层利用卷积核在输入图像上滑动,执行卷积操作,以提取地震属性图像中的特征信息。本文中采用三层卷积层对输入图像进行卷积处理,通过每层卷积层学习不同层次特征,以提高模型对输入数据的抽象和表达能力,卷积层的卷积窗口为3×3,步长设置为1,采用“same”补齐方式,对特征图的边缘进行补零,避免在卷积操作中产生损失边缘信息的问题,卷积通道分别设置为32、64和128,采用逐渐增加通道数的结构有利于网络对图像特征的学习,采用ReLU激活函数,使卷积神经网络学习复杂的非线性映射关系,并缓解训练过程中的梯度消失问题。

  • 池化层采用最大池化方法对特征图进行下采样,降低特征图的空间维度,同时保留输入图像重要的特征信息,本文中在每层卷积层后连接一层池化层,逐步缩小特征图的尺寸,使得网络更加适应不同层次的抽象表示,池化窗口设置为2×2,用相对较小的窗口,确保在下采样的同时保留更多的特征信息。

  • 全连接层包含128个神经元,采用Linear线性激活函数,用于整合所有提取的特征并生成砂地比参数的数值预测结果。为了衡量预测结果与真实结果之间的差异,采用均方根误差作为损失函数,通过梯度下降优化算法,不断调整模型参数,使模型更加准确地预测砂地比数值结果。

  • 图1 砂地比预测模型架构

  • Fig.1 Architecture of sand-to-ground ratio prediction model

  • 1.3 基于条件生成对抗网络的沉积微相模型构建

  • 生成对抗网络(GAN)是Goodfellow等[23]提出的一种深度学习模型,生成对抗网络由生成器G和鉴别器D组成,通过生成器和鉴别器的对抗性训练实现图像的生成。生成器负责生成逼真的目标图像,鉴别器负责判别输入数据的真伪,在模型训练过程中生成器生成虚假数据试图欺骗鉴别器,使其无法区分生成数据和真实数据,而鉴别器则尽量将生成数据与真实数据区分开来,并且通过对抗的方式促使生成器不断提高生成图像的逼真程度,同时鉴别器也不断提升对真实数据和生成数据的判别能力,直至达到纳什平衡。

  • 生成对抗网络将随机噪声作为输入,生成的样本具有随机性,难以直接控制生成结果,为解决这一难题,可以应用条件生成对抗网络(cGAN)。条件生成对抗网络通过在生成器和鉴别器的输入引入了条件信息,以生成准确且满足特定条件的图像,使得条件生成对抗网络在生成图像过程中可以收到外部条件的指导,为生成任务引入了更多的控制性。本文中采用砂地比和井相联合作为生成对抗网络的条件,以约束生成主河道、河道侧翼及河漫泥3种类型沉积微相,模型由生成器和鉴别器两个组件构成。

  • 生成器采用U-Net网络结构,由编码器和解码器组成,输入是井相图、砂地比图及随机噪声的联合向量,作为沉积微相图生成的联合约束条件。在编码器部分采用4个卷积层,卷积通道分别设置为64、128、256、512,卷积核大小均为4×4,步长为2,采用“same”补齐方式,在每个卷积层后添加归一化层和ReLU激活函数,提高网络收敛速度和稳定性。在解码器部分采用3个转置卷积层,卷积通道分别设置为512、256、128,卷积核大小均为4×4,步长为2,进行特征图的上采样,逐渐恢复到原始图像的尺寸,每个转置卷积层后跟随着归一化层和ReLU激活函数,在解码器的最后添加了1个卷积层,将特征图通道数转化为输出图像的通道数3,使用Tanh激活函数将输出图像的像素缩放到[-1,1]的范围内,生成器网络的卷积核大小均为3×3。在编码器和解码器之间采用跳跃连接,将编码器提取图像特征直接传递到解码器的相应层中,缓解生成图像过程中特征丢失问题,保留图像的细节信息,提高生成图像的质量,生成器的目标是生成符合砂地比和井相数据约束条件的沉积微相图。

  • 鉴别器的输入是条件信息、真实图像及生成图像,鉴别器的目标是在给定条件信息的情况下评估样本的真实性。鉴别器采用局部判别策略,将生成图像、真实图像及条件信息相应分割成n×n个小块,对每个局部区域进行独立的判别,最终输出一个n×n的矩阵,以该矩阵的平均值作为判断沉积微相图真假的最终结果,这种策略使得鉴别器更加关注图像的局部结构和细节,提高对图像细节的敏感性,从而更准确地评估生成图像与真实图像之间的差异。鉴别器由5个卷积层组成,卷积核大小均为4×4,在每个卷积层后添加批归一化层和LeakyReLU激活函数,前4个卷积层卷积步长为2,最后1个卷积层步长为1,最后得到判别矩阵,判别矩阵经Sigmoid激活函数激活处理后,数值将被映射到0到1之间,代表着对应图像局部区域的真实/虚假概率,大于0.5的值被视为真实,小于等于0.5的值被视为虚假。

  • 为提高生成图像质量,在cGAN损失函数基础上加入了L1惩罚项,因此损失函数为

  • L=LcGAN+λL1.
    (6)
  • 其中

  • LcGAN=Ex-p (x) [logD (xy) ]+Ez-p (z) [log (1-D (G (zy) ) ].

  • 式中,λ为超参数;LcGAN为条件生成对抗网络的损失函数;x为沉积微相图像数据;z为随机噪声;y为条件数据;Dx|y)为鉴别器的判定结果;Gz|y)为生成器生成的沉积微相图像。

  • L1惩罚项为生成图像与对应真实图像的像素差的绝对值之和,公式如下:

  • L1=x-G(zy).
    (7)
  • 1.4 地震属性驱动的条件生成对抗网络沉积微相模型构建

  • 为建立更加精确的沉积微相模型,本文中提出一种地震属性驱动的条件生成对抗网络沉积微相模型构建方法。如图2所示,首先基于灰色关联分析算法对地震属性进行敏感参数分析,计算各地震属性与砂地比的关联度,挖掘对砂地比参数敏感的地震属性;将以井点为中心的优选地震属性二维图片作为输入,训练卷积神经网络模型,实现砂地比的精准预测,并将小层砂地比预测结果可视化成图;将砂地比数据与井相数据作为联合约束条件,训练条件生成对抗网络,学习沉积微相分布规律及约束条件与沉积微相之间的联系,构建沉积微相生成模型,实现小层沉积微相的精确建模。

  • 图2 沉积微相建模技术架构

  • Fig.2 Architecture of sedimentary microfacies modeling technology

  • 2 应用实例

  • 东部地区某油田小层沉积环境为重力流沉积,主要包括主河道、河道侧翼及河漫泥3种沉积微相类型。针对该研究区域的地震属性数据及井相数据,应用本文中提出的地震属性驱动的条件生成对抗网络沉积微相模型构建方法对小层沉积微相进行精准建模。

  • 2.1 灰色关联分析

  • 提取研究区域目的层井点处弧长、平均能量、均方根振幅、平均绝对振幅、振幅峰度、振幅方差、平均瞬时相位等共计24个地震属性作为分析对象,基于灰色关联算法,对这些地震属性与砂地比参数进行关联分析,计算各地震属性与砂地比的关联度,用于评估它们之间的关联性,并选择关联度高的地震属性作为砂地比预测模型训练所用参数。灰色关联分析结果如图3所示,平均能量、平均绝对振幅、均方根振幅、瞬时频率斜率、总绝对振幅、振幅变化这6个地震属性与砂地比参数的灰色关联度均高于0.8,表明这些地震属性与砂地比参数之间具有显著的关联性,因此选取这6种地震属性作为砂地比预测参数。

  • 图3 灰色关联分析结果

  • Fig.3 Grey correlation analysis results

  • 2.2 基于卷积神经网络的砂地比预测

  • 基于优选地震属性结果,对研究区域7个小层、34口井按照1.2所述方法进行砂地比预测数据集的构建,共得到238条数据。鉴于数据集的数据量较少,对优选地震属性图像进行了旋转对称处理,将每张地震属性图像扩充为8张地震属性图像,最终构建了包含1904条数据的砂地比预测数据集。

  • 为了模型的训练和评估,选取9口井总计504条数据作为测试集,其余数据作为训练集。在模型训练过程中,选用均方根误差作为损失函数,采用Adam优化器进行模型参数的更新,设置学习率为0.001,迭代训练次数为500次。从图4中训练集和测试集的误差曲线可以看出,随着迭代训练次数的增加,训练集和测试集误差逐渐趋于平稳,当迭代训练次数达到300次后,训练集误差维持在低于0.04的水平,测试集误差稳定低于0.06,表明砂地比预测模型在经过训练后取得了良好的效果。针对小层地震属性数据,基于该模型对小层砂地比数值进行预测,并将小层的砂地比预测结果可视化成图,如图5所示。

  • 图4 误差下降曲线

  • Fig.4 Error decline curve

  • 图5 小层砂地比结果可视化

  • Fig.5 Visualization of sand-to-ground ratio results for individual layers

  • 2.3 基于条件生成对抗网络的沉积微相生成

  • 针对研究区域7个小层的沉积微相图数据量较少的问题,首先对图像进行旋转对称操作,将每张原始图像扩充为8张图像,得到56张沉积微相图,对相应小层砂地比图像也做相同操作,得到56张小层砂地比结果图像。其次,针对小层34口井随机选取25口井进行井相图的绘制,每个小层绘制8张井相图,每张井相图包含25个井点,通过这种方式扩充数据集。每个样本包括1张沉积微相图像(图6(a))、1张井相图像(图6(b))和1张砂地比图像(图5)。按照上述方法,构建共计448条数据的数据集。

  • 在训练过程中,模型输入样本设置为256×256,每批次包含32个样本,训练迭代次数为200,使用Adam优化器,学习率设置为0.001。训练后模型生成的部分沉积微相图结果如图7所示,可以看出本文方法生成的沉积微相图相较于序贯指示模拟结果和基于目标的随机模拟结果更加精确地刻画了河道侧翼类型的沉积微相;相较于多点地质统计学模拟结果,本文方法在沉积微相展布方面呈现更加连贯的效果;与基于井相数据的cGAN方法结果相比,本文方法更加清晰地刻画了不同沉积微相类型的边界。表明本方法在刻画沉积微相复杂空间结构上有着优异的效果,模型通过学习沉积环境中微相的空间分布和特征,清晰地刻画了不同沉积微相之间的边界。

  • 图6 部分样本数据

  • Fig.6 Part of sample data

  • 为评估本方法沉积微相建模的精确程度,从7个小层的沉积微相图中选取1个小层作为测试数据,向生成器中输入该小层的砂地比图和井相图作为约束条件,最终生成该小层的沉积微相图,并统计34口井在生成的沉积微相图上的正确分类情况,分类结果如表1所示,通过计算井点处沉积微相分类准确率用于评价沉积微相建模结果的精确程度。

  • 结果表明,该小层34个井点位置,有32个被正确分类,正确率为94.1%。如表2所示,与现有沉积微相建模方法相比,本文方法对井点沉积微相分类的准确率最高,证明了本文方法与现有沉积微相建模方法相比建模精确程度方面表现更为出色。

  • 本文方法在基于井相数据的cGAN方法的基础上引入了全局特征(砂地比),在测试数据上对井点沉积微相分类的准确率进行比较。结果表明,增加砂地比作为约束条件,生成沉积微相图的井点沉积微相井点吻合率更高,河道侧翼和不同沉积微相类型边界刻画更加精确,如图8所示。

  • 图7 各类方法沉积微相图生成结果对比

  • Fig.7 Comparison of sedimentary microfacies by various methods

  • 表1 沉积微相分类结果

  • Table1 Classification results of sedimentary microfacies

  • 表2 分类准确率对比

  • Table2 Classification accuracy comparison

  • 图8 生成图像效果对比

  • Fig.8 Generated image effect comparison

  • 3 结束语

  • 本文中设计了一种地震属性驱动的条件生成对抗网络沉积微相模型构建方法,针对小层地震属性数据,采用灰色关联分析算法,挖掘与砂地比具有强关联的地震属性;基于优选地震属性,设计了基于卷积神经网络的砂地比预测方法,实现对小层砂地比的精准预测;将砂地比数据与井相数据作为条件生成对抗网络的联合约束条件,训练条件生成对抗网络模型,学习沉积微相分布规律及约束条件与沉积微相之间的联系,最终得到沉积微相生成模型,实现小层沉积微相图精准生成,为油气田的勘探开发提供了更好的支持。

  • 参考文献

    • [1] 宋璠,侯加根,张震,等.利用测井曲线研究陆相湖泊沉积微相[J].测井技术,2009,33(6):589-592.SONG Fan,HOU Jiagen,ZHANG Zhen,et al.Application of log curves in indicating sedimentary micro-facies of lake facies basins[J].Well Logging Technology,2009,33(6):589-592.

    • [2] 袁士义,王强.中国油田开发主体技术新进展与展望[J].石油勘探与开发,2018,45(4):657-668.YUAN Shiyi,WANG Qiang.New progress and prospects of main technologies for oilfield development in China[J].Petroleum Exploration and Development,2018,45(4):657-668.

    • [3] 贾承造,庞雄奇,姜福杰.中国油气资源研究现状与发展方向[J].石油科学通报,2016,1(1):2-23.JIA Chengzao,PANG Xiongqi,JIANG Fujie.Current status and development direction of oil and gas resources research in China[J].Petroleum Science Bulletin,2016,1(1):2-23.

    • [4] 张本健,钟原,周刚,等.四川盆地中部蓬莱地区灯二段沉积微相演化及气藏综合评价[J].海相油气地质,2023,28(1):1-10.ZHANG Benjian,ZHONG Yuan,ZHOU Gang,et al.Sedimentary microfacies evolution and comprehensive evaluation of gas reservoir of the Dengying Member 2 in Penglai Area,central Sichuan Basin[J].Marine Origin Petroleum Geology,2023,28(1):1-10.

    • [5] 黄继新,徐芳,齐梅,等.巴西M油田白垩系湖相碳酸盐岩沉积相类型及分布[J].海相油气地质,2023,28(1):45-54.HUANG Jixin,XU Fang,QI Mei,et al.Types and distribution of sedimentary facies of the Cretaceous carbonate reservoirs in the M Oilfield of Santos Basin,Brazil[J].Marine Origin Petroleum Geology,2023,28(1):45-54.

    • [6] 何利,刘建清,隆轲,等.川西北地区中三叠统雷口坡组沉积相再认识[J].海相油气地质,2023,28(4):371-380.HE Li,LIU Jianqing,LONG Ke,et al.New understanding of sedimentary facies of the Middle Triassic Leikoupo Formation in northwestern Sichuan Basin[J].Marine Origin Petroleum Geology,2023,28(4):371-380.

    • [7] 穆晓亮,常少英,牛花朋,等.断陷湖盆中深层砂体地震沉积学研究:以南堡凹陷老爷庙地区东三上亚段为例[J].海相油气地质,2024,29(3):327-336.MU Xiaoliang,CHANG Shaoying,NIU Huapeng,et al.Study on seismic sedimentology of middle-deep sand bodies in faulted lacustrine basin:taking the upper third member of Dongying Formation in Laoyemiao area of Nanpu Sag as an example[J].Marine Origin Petroleum Geology,2024,29(3):327-336.

    • [8] 姜锐,赵靖舟,陈宇航.苏里格气田苏西区储层地质建模[J].西安石油大学学报(自然科学版),2020,35(3):10-17.JIANG Rui,ZHAO Jingzhou,CHEN Yuhang.Geological modeling of reservoirs in Suxi area of Sulige gas field[J].Journal of Xi'an Shiyou University(Natural Science Edition),2020,35(3):10-17.

    • [9] 王佳琦,邢瑶.应用序贯指示模拟方法建立三维地质模型:以靖安油田盘古梁油藏为例[J].云南化工,2019,46(9):146-149.WANG Jiaqi,XING Yao.Application of sequential indicator simulation method to establish a three-dimensional geological model:taking the Panguliang oil reservoir in Jing'an Oilfield as an example[J].Yunnan Chemical Industry,2019,46(9):146-149.

    • [10] 贺婷婷,谈心,段太忠,等.综合沉积正演与多点地质统计模拟辫状河三角洲:以塔河T区为例[J].地质科技通报,2021,40(3):54-66.HE Tingting,TAN Xin,DUAN Taizhong,et al.Comprehensive sedimentary forward modeling and multi-point geological statistical simulation of braided river delta:a case study of Tahe T area[J].Geological Science and Technology Bulletin,2021,40(3):54-66.

    • [11] 丁芳,陆嫣,段冬平,等.多点地质统计学建模方法在复杂叠置样式砂体表征中的应用[J].复杂油气藏,2017,10(1):34-38.DING Fang,LU Yan,DUAN Dongping,et al.Complex superimposition type sandbody characterized by multiple-point geostatistics modeling method[J].Complex Hydrocarbon Reservoirs,2017,10(1):34-38.

    • [12] 王立鑫,尹艳树,冯文杰,等.多点地质统计学中训练图像优选方法及其在地质建模中的应用[J].石油勘探与开发,2019,46(4):703-709.WANG Lixin,YIN Yanshu,FENG Wenjie,et al.Training image optimization method in multipoint geostatistics and its application in geological modeling[J].Petroleum Exploration and Development,2019,46(4):703-709.

    • [13] 付超,谢玉洪,宋来明,等.基于沉积模拟的虚拟井建立与深水峡谷相控建模策略:以琼东南盆地中央峡谷陵水段为例[J].海相油气地质,2023,28(4):413-424.FU Chao,XIE Yuhong,SONG Laiming,et al.Pseudo-well setting and strategy of facies-controlled reservoir modeling of deep water canyon based on sedimentary simulation:taking the Lingshui section of the Central Canyon in Qiongdongnan Basin as an example[J].Marine Origin Petroleum Geology,2023,28(4):413-424.

    • [14] 赖泽武,黄沧佃,彭仕宓.储层结构目标建模程序MOD_OBJ及其应用[J].石油大学学报(自然科学版),2001,25(1):63-66.LAI Zewu,HUANG Cangdian,PENG Shimi.Reservoir structure target modeling program MOD_ OBJ and its applications[J].Journal of the University of Petroleum,China(Edition of Natural Science),2001,25(1):63-66.

    • [15] 李少华,卢昌盛,何维领,等.一种基于目标的非贯穿型河道建模方法[J].天然气地球科学,2019,30(3):305-311.LI Shaohua,LU Changsheng,HE Weiling,et al.An object-based modeling method for channels not across through interesting area[J].Natural Gas Geoscience,2019,30(3):305-311.

    • [16] 尹楠鑫,张吉,李存贵,等.改进的基于目标的高精度沉积微相建模方法在苏14加密实验区的应用[J].成都理工大学学报(自然科学版),2017,44(1):76-85.YIN Nanxin,ZHANG Ji,LI Cungui,et al.Application of an improved target based high-precision sedimentary microfacies modeling method in the Su 14 encryption experimental area[J].Journal of Chengdu University of Technology(Natural Science Edition),2017,44(1):76-85.

    • [17] 王珂,张荣虎,李宝刚,等.致密砂岩储层构造裂缝特征及地质建模:以塔里木盆地库车坳陷大北12气藏为例[J].海相油气地质,2023,28(1):72-82.WANG Ke,ZHANG Ronghu,LI Baogang,et al.Characteristics and geological modeling of structural fractures in tight sandstone reservoir:taking Dabei-12 gas reservoir in Kuqa Depression,Tarim Basin as an example[J].Marine Origin Petroleum Geology,2023,28(1):72-82.

    • [18] 李晓光,张焕芝,徐海云,等.2022石油地球物理勘探技术进展[J].世界石油工业,2023,30(3):24-31.LI Xiaoguang,ZHANG Huanzhi,XU Haiyun,et al.Progress of petroleum geophysical technologies in 2022[J].World Petroleum Industry,2023,30(3):24-31.

    • [19] 王天云,韩小锋,许海红,等.无监督神经网络地震属性聚类方法在沉积相研究中的应用[J].石油地球物理勘探,2021,56(2):372-379,215.WANG Tianyun,HAN Xiaofeng,XU Haihong,et al.Application of unsupervised neural network seismic attribute clustering method in sedimentary facies research[J].Petroleum Geophysical Exploration,2021,56(2):372-379,215.

    • [20] 孟欣然,梁堰波,孟宪海,等.基于FILTERSIM算法的油藏沉积微相模拟研究[J].计算机工程与设计,2013,34(2):545-549.MENG Xinran,LIANG Yanbo,MENG Xianhai,et al.Study on reservoir sedimentary microfacies simulation based on the FILTERSIM algorithm[J].Computer Engineering and Design,2013,34(2):545-549.

    • [21] 王喜鑫,倪雪儿,李少华,等.基于深度学习地震多属性融合的海上少井条件下河道型砂体构型解释:以西湖凹陷X气田为例[J].海相油气地质,2023,28(3):261-268.WANG Xixin,NI Xueer,LI Shaohua,et al.Architecture interpretation of channel sand body under offshore few well conditions based on deep learning seismic multi-attributes fusion:a case of X gas field in Xihu Sag,Donghai Shelf Basin[J].Marine Origin Petroleum Geology,2023,28(3):261-268.

    • [22] 王凯,刘东成,刘华峰,等.基于FCM算法的多属性分析技术在河道砂体精细刻画中的应用:以西湖凹陷T气田为例[J].海洋地质前沿,2023,39(9):55-67.WANG Kai,LIU Dongcheng,LIU Huafeng,et al.Application of multi-attribute analysis technology based on FCM algorithm in fine characterization of river sand bodies:a case study of T gas field in Xihu Depression[J].Frontiers of Marine Geology,2023,39(9):55-67.

    • [23] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[J].Advances in Neural Information Processing Systems,2014,27(1):2672-2680.

    • [24] 周嵘,吴朝东,张亚楠.基于生成对抗网络的砂岩薄片图像视野外重建[J].北京大学学报(自然科学版),2023,59(2):231-241.ZHOU Rong,WU Chaodong,ZHANG Yanan.Outpainting reconstruction of sandstone thin-section image based on generative adversarial network[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2023,59(2):231-241.

    • [25] 程国建,张福临.基于SinGAN的岩石薄片图像超分辨率重建[J].西安石油大学学报(自然科学版),2021,36(2):116-121.CHENG Guojian,ZHANG Fulin.Super-resolution reconstruction of rock slice image based on SinGAN[J].Journal of Xi'an Shiyou University(Natural Science Edition),2021,36(2):116-121.

    • [26] 李刚,张亚兵,杨庆贺,等.基于Real-ESRGAN的岩石CT图像超分辨率重建[J].工矿自动化,2023,49(11):84-91.LI Gang,ZHANG Yabing,YANG Qinghe,et al.Super resolution reconstruction of rock CT images based on Real-ESRGAN[J].Industrial and Mining Automation,2023,49(11):84-91.

    • [27] 韩建光,王卿,许媛,等.基于A-CGAN的深反射地震数据随机噪声压制方法研究[J].地质论评,2024,70(1):228-238.HAN Jianguang,WANG Qing,XU Yuan,et al.Research on random noise suppression method for deep reflection seismic data based on A-CGAN[J].Geological Review,2024,70(1):228-238.

    • [28] 张一,丁仁伟,赵硕,等.基于改进环形生成对抗网络的浅地层剖面去噪方法[J].CT理论与应用研究,2023,32(1):15-25.ZHANG Yi,DING Renwei,ZHAO Shuo,et al.A shallow profile denoising method based on an improved circular generative adversarial network[J].CT Theory and Application Research,2023,32(1):15-25.

    • [29] 吴学锋,张会星.基于循环一致性生成对抗网络的地震数据随机噪声压制方法[J].石油地球物理勘探,2021,56(5):958-968,923-924.WU Xuefeng,ZHANG Huixing.Random noise suppression method for seismic data based on cyclic consistency generative adversarial networks[J].Petroleum Geophysical Exploration,2021,56(5):958-968,923-924.

    • [30] 杨永飞,刘夫贵,姚军,等.基于生成对抗网络的页岩三维数字岩心构建[J].西南石油大学学报(自然科学版),2021,43(5):73-83.YANG Yongfei,LIU Fugui,YAO Jun,et al.Construction of shale 3D digital core based on generative adversarial networks[J].Journal of Southwest Petroleum University(Natural Science Edition),2021,43(5):73-83.

    • [31] MOSSER L,DUBRULE O,BLUNT M J.Reconstruction of three-dimensional porous media using generative adversarial neural networks[J].Physical Review E,2017,96(4):043309.

    • [32] ZHA W,LI X,LI D,et al.Shale digital core image generation based on generative adversarial networks[J].Journal of Energy Resources Technology,2021,143(3):033003.

    • [33] LALOY E,HÉRAULT R,JACQUES D,et al.Training-image based geostatistical inversion using a spatial generative adversarial neural network[J].Water Resources Research,2018,54(1):381-406.

    • [34] NESVOLD E,MUKERJI T.Simulation of fluvial patterns with GANs trained on a data set of satellite imagery[J].Water Resources Research,2021,57(5):e2019WR025787.

    • [35] SONG S,MUKERJI T,HOU J.Geological facies modeling based on progressive growing of generative adversarial networks(GANs)[J].Computational Geosciences,2021,25:1251-1273.

    • [36] GAO X,HE W,HU Y.Modeling of meandering river deltas based on the conditional generative adversarial network[J].Journal of Petroleum Science and Engineering,2020,193:107352.

    • [37] FAN W,LIU G,CHEN Q,et al.Geological model automatic reconstruction based on conditioning Wasserstein generative adversarial network with gradient penalty[J].Earth Science Informatics,2023,16(3):2825-2843.

    • [38] 胡勇,高小洋,何文祥,等.利用条件生成对抗网络建立曲流河地质模型[J].沉积学报,2022,42(1):201-218.HU Yong,GAO Xiaoyang,HE Wenxiang,et al.Establishing a geological model of meandering rivers using conditional generative adversarial networks[J].Journal of Sedimentology,2022,42(1):201-218.

    • [39] 王艳松,申晓阳,李强,等.基于PCA-GRD-LWR模型的海上油田中长期最大电力负荷预测[J].中国石油大学学报(自然科学版),2023,47(2):129-135.WANG Yansong,SHEN Xiaoyang,LI Qiang,et al.Long term maximum power load prediction of offshore oil fields based on PCA-GRD-LWR model[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(2):129-135.

    • [40] LIU Y G,GAO P,LAN D,et al.ECA-SKNet:convolutional neural network recognition model for maize haploid seeds[J].Journal of University of Electronic Science and Technology of China,2023,52(6):866-871.

  • 参考文献

    • [1] 宋璠,侯加根,张震,等.利用测井曲线研究陆相湖泊沉积微相[J].测井技术,2009,33(6):589-592.SONG Fan,HOU Jiagen,ZHANG Zhen,et al.Application of log curves in indicating sedimentary micro-facies of lake facies basins[J].Well Logging Technology,2009,33(6):589-592.

    • [2] 袁士义,王强.中国油田开发主体技术新进展与展望[J].石油勘探与开发,2018,45(4):657-668.YUAN Shiyi,WANG Qiang.New progress and prospects of main technologies for oilfield development in China[J].Petroleum Exploration and Development,2018,45(4):657-668.

    • [3] 贾承造,庞雄奇,姜福杰.中国油气资源研究现状与发展方向[J].石油科学通报,2016,1(1):2-23.JIA Chengzao,PANG Xiongqi,JIANG Fujie.Current status and development direction of oil and gas resources research in China[J].Petroleum Science Bulletin,2016,1(1):2-23.

    • [4] 张本健,钟原,周刚,等.四川盆地中部蓬莱地区灯二段沉积微相演化及气藏综合评价[J].海相油气地质,2023,28(1):1-10.ZHANG Benjian,ZHONG Yuan,ZHOU Gang,et al.Sedimentary microfacies evolution and comprehensive evaluation of gas reservoir of the Dengying Member 2 in Penglai Area,central Sichuan Basin[J].Marine Origin Petroleum Geology,2023,28(1):1-10.

    • [5] 黄继新,徐芳,齐梅,等.巴西M油田白垩系湖相碳酸盐岩沉积相类型及分布[J].海相油气地质,2023,28(1):45-54.HUANG Jixin,XU Fang,QI Mei,et al.Types and distribution of sedimentary facies of the Cretaceous carbonate reservoirs in the M Oilfield of Santos Basin,Brazil[J].Marine Origin Petroleum Geology,2023,28(1):45-54.

    • [6] 何利,刘建清,隆轲,等.川西北地区中三叠统雷口坡组沉积相再认识[J].海相油气地质,2023,28(4):371-380.HE Li,LIU Jianqing,LONG Ke,et al.New understanding of sedimentary facies of the Middle Triassic Leikoupo Formation in northwestern Sichuan Basin[J].Marine Origin Petroleum Geology,2023,28(4):371-380.

    • [7] 穆晓亮,常少英,牛花朋,等.断陷湖盆中深层砂体地震沉积学研究:以南堡凹陷老爷庙地区东三上亚段为例[J].海相油气地质,2024,29(3):327-336.MU Xiaoliang,CHANG Shaoying,NIU Huapeng,et al.Study on seismic sedimentology of middle-deep sand bodies in faulted lacustrine basin:taking the upper third member of Dongying Formation in Laoyemiao area of Nanpu Sag as an example[J].Marine Origin Petroleum Geology,2024,29(3):327-336.

    • [8] 姜锐,赵靖舟,陈宇航.苏里格气田苏西区储层地质建模[J].西安石油大学学报(自然科学版),2020,35(3):10-17.JIANG Rui,ZHAO Jingzhou,CHEN Yuhang.Geological modeling of reservoirs in Suxi area of Sulige gas field[J].Journal of Xi'an Shiyou University(Natural Science Edition),2020,35(3):10-17.

    • [9] 王佳琦,邢瑶.应用序贯指示模拟方法建立三维地质模型:以靖安油田盘古梁油藏为例[J].云南化工,2019,46(9):146-149.WANG Jiaqi,XING Yao.Application of sequential indicator simulation method to establish a three-dimensional geological model:taking the Panguliang oil reservoir in Jing'an Oilfield as an example[J].Yunnan Chemical Industry,2019,46(9):146-149.

    • [10] 贺婷婷,谈心,段太忠,等.综合沉积正演与多点地质统计模拟辫状河三角洲:以塔河T区为例[J].地质科技通报,2021,40(3):54-66.HE Tingting,TAN Xin,DUAN Taizhong,et al.Comprehensive sedimentary forward modeling and multi-point geological statistical simulation of braided river delta:a case study of Tahe T area[J].Geological Science and Technology Bulletin,2021,40(3):54-66.

    • [11] 丁芳,陆嫣,段冬平,等.多点地质统计学建模方法在复杂叠置样式砂体表征中的应用[J].复杂油气藏,2017,10(1):34-38.DING Fang,LU Yan,DUAN Dongping,et al.Complex superimposition type sandbody characterized by multiple-point geostatistics modeling method[J].Complex Hydrocarbon Reservoirs,2017,10(1):34-38.

    • [12] 王立鑫,尹艳树,冯文杰,等.多点地质统计学中训练图像优选方法及其在地质建模中的应用[J].石油勘探与开发,2019,46(4):703-709.WANG Lixin,YIN Yanshu,FENG Wenjie,et al.Training image optimization method in multipoint geostatistics and its application in geological modeling[J].Petroleum Exploration and Development,2019,46(4):703-709.

    • [13] 付超,谢玉洪,宋来明,等.基于沉积模拟的虚拟井建立与深水峡谷相控建模策略:以琼东南盆地中央峡谷陵水段为例[J].海相油气地质,2023,28(4):413-424.FU Chao,XIE Yuhong,SONG Laiming,et al.Pseudo-well setting and strategy of facies-controlled reservoir modeling of deep water canyon based on sedimentary simulation:taking the Lingshui section of the Central Canyon in Qiongdongnan Basin as an example[J].Marine Origin Petroleum Geology,2023,28(4):413-424.

    • [14] 赖泽武,黄沧佃,彭仕宓.储层结构目标建模程序MOD_OBJ及其应用[J].石油大学学报(自然科学版),2001,25(1):63-66.LAI Zewu,HUANG Cangdian,PENG Shimi.Reservoir structure target modeling program MOD_ OBJ and its applications[J].Journal of the University of Petroleum,China(Edition of Natural Science),2001,25(1):63-66.

    • [15] 李少华,卢昌盛,何维领,等.一种基于目标的非贯穿型河道建模方法[J].天然气地球科学,2019,30(3):305-311.LI Shaohua,LU Changsheng,HE Weiling,et al.An object-based modeling method for channels not across through interesting area[J].Natural Gas Geoscience,2019,30(3):305-311.

    • [16] 尹楠鑫,张吉,李存贵,等.改进的基于目标的高精度沉积微相建模方法在苏14加密实验区的应用[J].成都理工大学学报(自然科学版),2017,44(1):76-85.YIN Nanxin,ZHANG Ji,LI Cungui,et al.Application of an improved target based high-precision sedimentary microfacies modeling method in the Su 14 encryption experimental area[J].Journal of Chengdu University of Technology(Natural Science Edition),2017,44(1):76-85.

    • [17] 王珂,张荣虎,李宝刚,等.致密砂岩储层构造裂缝特征及地质建模:以塔里木盆地库车坳陷大北12气藏为例[J].海相油气地质,2023,28(1):72-82.WANG Ke,ZHANG Ronghu,LI Baogang,et al.Characteristics and geological modeling of structural fractures in tight sandstone reservoir:taking Dabei-12 gas reservoir in Kuqa Depression,Tarim Basin as an example[J].Marine Origin Petroleum Geology,2023,28(1):72-82.

    • [18] 李晓光,张焕芝,徐海云,等.2022石油地球物理勘探技术进展[J].世界石油工业,2023,30(3):24-31.LI Xiaoguang,ZHANG Huanzhi,XU Haiyun,et al.Progress of petroleum geophysical technologies in 2022[J].World Petroleum Industry,2023,30(3):24-31.

    • [19] 王天云,韩小锋,许海红,等.无监督神经网络地震属性聚类方法在沉积相研究中的应用[J].石油地球物理勘探,2021,56(2):372-379,215.WANG Tianyun,HAN Xiaofeng,XU Haihong,et al.Application of unsupervised neural network seismic attribute clustering method in sedimentary facies research[J].Petroleum Geophysical Exploration,2021,56(2):372-379,215.

    • [20] 孟欣然,梁堰波,孟宪海,等.基于FILTERSIM算法的油藏沉积微相模拟研究[J].计算机工程与设计,2013,34(2):545-549.MENG Xinran,LIANG Yanbo,MENG Xianhai,et al.Study on reservoir sedimentary microfacies simulation based on the FILTERSIM algorithm[J].Computer Engineering and Design,2013,34(2):545-549.

    • [21] 王喜鑫,倪雪儿,李少华,等.基于深度学习地震多属性融合的海上少井条件下河道型砂体构型解释:以西湖凹陷X气田为例[J].海相油气地质,2023,28(3):261-268.WANG Xixin,NI Xueer,LI Shaohua,et al.Architecture interpretation of channel sand body under offshore few well conditions based on deep learning seismic multi-attributes fusion:a case of X gas field in Xihu Sag,Donghai Shelf Basin[J].Marine Origin Petroleum Geology,2023,28(3):261-268.

    • [22] 王凯,刘东成,刘华峰,等.基于FCM算法的多属性分析技术在河道砂体精细刻画中的应用:以西湖凹陷T气田为例[J].海洋地质前沿,2023,39(9):55-67.WANG Kai,LIU Dongcheng,LIU Huafeng,et al.Application of multi-attribute analysis technology based on FCM algorithm in fine characterization of river sand bodies:a case study of T gas field in Xihu Depression[J].Frontiers of Marine Geology,2023,39(9):55-67.

    • [23] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[J].Advances in Neural Information Processing Systems,2014,27(1):2672-2680.

    • [24] 周嵘,吴朝东,张亚楠.基于生成对抗网络的砂岩薄片图像视野外重建[J].北京大学学报(自然科学版),2023,59(2):231-241.ZHOU Rong,WU Chaodong,ZHANG Yanan.Outpainting reconstruction of sandstone thin-section image based on generative adversarial network[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2023,59(2):231-241.

    • [25] 程国建,张福临.基于SinGAN的岩石薄片图像超分辨率重建[J].西安石油大学学报(自然科学版),2021,36(2):116-121.CHENG Guojian,ZHANG Fulin.Super-resolution reconstruction of rock slice image based on SinGAN[J].Journal of Xi'an Shiyou University(Natural Science Edition),2021,36(2):116-121.

    • [26] 李刚,张亚兵,杨庆贺,等.基于Real-ESRGAN的岩石CT图像超分辨率重建[J].工矿自动化,2023,49(11):84-91.LI Gang,ZHANG Yabing,YANG Qinghe,et al.Super resolution reconstruction of rock CT images based on Real-ESRGAN[J].Industrial and Mining Automation,2023,49(11):84-91.

    • [27] 韩建光,王卿,许媛,等.基于A-CGAN的深反射地震数据随机噪声压制方法研究[J].地质论评,2024,70(1):228-238.HAN Jianguang,WANG Qing,XU Yuan,et al.Research on random noise suppression method for deep reflection seismic data based on A-CGAN[J].Geological Review,2024,70(1):228-238.

    • [28] 张一,丁仁伟,赵硕,等.基于改进环形生成对抗网络的浅地层剖面去噪方法[J].CT理论与应用研究,2023,32(1):15-25.ZHANG Yi,DING Renwei,ZHAO Shuo,et al.A shallow profile denoising method based on an improved circular generative adversarial network[J].CT Theory and Application Research,2023,32(1):15-25.

    • [29] 吴学锋,张会星.基于循环一致性生成对抗网络的地震数据随机噪声压制方法[J].石油地球物理勘探,2021,56(5):958-968,923-924.WU Xuefeng,ZHANG Huixing.Random noise suppression method for seismic data based on cyclic consistency generative adversarial networks[J].Petroleum Geophysical Exploration,2021,56(5):958-968,923-924.

    • [30] 杨永飞,刘夫贵,姚军,等.基于生成对抗网络的页岩三维数字岩心构建[J].西南石油大学学报(自然科学版),2021,43(5):73-83.YANG Yongfei,LIU Fugui,YAO Jun,et al.Construction of shale 3D digital core based on generative adversarial networks[J].Journal of Southwest Petroleum University(Natural Science Edition),2021,43(5):73-83.

    • [31] MOSSER L,DUBRULE O,BLUNT M J.Reconstruction of three-dimensional porous media using generative adversarial neural networks[J].Physical Review E,2017,96(4):043309.

    • [32] ZHA W,LI X,LI D,et al.Shale digital core image generation based on generative adversarial networks[J].Journal of Energy Resources Technology,2021,143(3):033003.

    • [33] LALOY E,HÉRAULT R,JACQUES D,et al.Training-image based geostatistical inversion using a spatial generative adversarial neural network[J].Water Resources Research,2018,54(1):381-406.

    • [34] NESVOLD E,MUKERJI T.Simulation of fluvial patterns with GANs trained on a data set of satellite imagery[J].Water Resources Research,2021,57(5):e2019WR025787.

    • [35] SONG S,MUKERJI T,HOU J.Geological facies modeling based on progressive growing of generative adversarial networks(GANs)[J].Computational Geosciences,2021,25:1251-1273.

    • [36] GAO X,HE W,HU Y.Modeling of meandering river deltas based on the conditional generative adversarial network[J].Journal of Petroleum Science and Engineering,2020,193:107352.

    • [37] FAN W,LIU G,CHEN Q,et al.Geological model automatic reconstruction based on conditioning Wasserstein generative adversarial network with gradient penalty[J].Earth Science Informatics,2023,16(3):2825-2843.

    • [38] 胡勇,高小洋,何文祥,等.利用条件生成对抗网络建立曲流河地质模型[J].沉积学报,2022,42(1):201-218.HU Yong,GAO Xiaoyang,HE Wenxiang,et al.Establishing a geological model of meandering rivers using conditional generative adversarial networks[J].Journal of Sedimentology,2022,42(1):201-218.

    • [39] 王艳松,申晓阳,李强,等.基于PCA-GRD-LWR模型的海上油田中长期最大电力负荷预测[J].中国石油大学学报(自然科学版),2023,47(2):129-135.WANG Yansong,SHEN Xiaoyang,LI Qiang,et al.Long term maximum power load prediction of offshore oil fields based on PCA-GRD-LWR model[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(2):129-135.

    • [40] LIU Y G,GAO P,LAN D,et al.ECA-SKNet:convolutional neural network recognition model for maize haploid seeds[J].Journal of University of Electronic Science and Technology of China,2023,52(6):866-871.