基于FRFT和自适应滤波技术的LFM信号处理方法
CSTR:
作者:
作者单位:

(中国石油大学(华东)理学院,山东青岛 266580)

作者简介:

魏宝君(1969-),男,教授,博士,教育部“新世纪优秀人才支持计划”入选者,研究方向为电磁探测理论及应用。E-mail:weibj@upc.edu.cn。

通讯作者:

中图分类号:

:TN 911.7

基金项目:

国家重点研发计划(2019YFC1408104)


Processing method of LFM signals based on FRFT and adaptive filtering technique
Author:
Affiliation:

(College of Science in China University of Petroleum (East China), Qingdao 266580, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    将分数阶傅里叶变换(FRFT)与基于相关特性的箕舌线变步长自适应滤波技术相结合,处理含噪声的线性调频(LFM)信号。结果表明,将时域信号在最优阶数下做分数阶傅里叶变换后,利用基于相关特性的箕舌线变步长自适应滤波算法在最佳分数阶傅里叶域中进行滤波处理,可将混杂在LFM信号中的大部分噪声信号滤掉,实现对有用信号的有效提取。在低信噪比情况下,与滑动平均处理、小波变换相比,自适应滤波技术滤波效果更好,更容易从高强度噪声中提取出微弱的目标信号,适用范围更广。当变换阶数为最优阶数时,信号误差收敛到极小值的速度最快,最终达到的极值最小,滤波处理的效果最好。LFM信号的调频斜率越大,对应的最优阶数越大,最优阶数下信号的均方误差增大。对存在强度差异的多分量LFM信号进行滤波时,可采用先提取强信号再依次提取弱信号的步骤逐级提取出不同分量的信号,这种逐级提取的方法可有效减少强分量信号对弱分量信号的干扰,优化了弱分量信号的提取性能。

    Abstract:

    The fractional Fourier transform (FRFT) was combined with a tongue-like curve variable-step adaptive filtering technique based on correlation characteristics to process linear frequency modulation (LFM) signals contaminated by noise. Simulation results demonstrate that most of the noise in LFM signals can be filtered out by first applying the optimal-order FRFT to time-domain signals, followed by the tongue-like curve variable-step adaptive filtering algorithm in the optimal fractional Fourier domain. This procedure allows for effective extraction of the useful signals. Under low signal-to-noise ratio conditions, the adaptive filtering technology outperforms moving average processing and wavelet transform methods, making it more suitable for extracting weak target signals from high-intensity noise and broadening its range of applications. When the transformation order is optimal, the signal error converges to its minimal value rapidly, and the final extreme value reached is the smallest, resulting in the best filtering performance. The larger the frequency modulation slope of the LFM signal, the higher the corresponding optimal order, and the mean square error under the optimal order increases. For multi-component LFM signals with varying intensities, a sequential extraction approach of first extracting strong signals then weak signals can be applied to extract different components step by step. This approach effectively reduces interference from strong components on weak components, thereby optimizing the extraction performance of the weak signals.

    参考文献
    相似文献
    引证文献
引用本文

魏宝君,夏恺,刘健,张必成,王荣贞.基于FRFT和自适应滤波技术的LFM信号处理方法[J].,2025,49(5):71-81

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-10-29
  • 出版日期:
文章二维码