基于多尺度特征提取的U-Net网络微地震定位方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    微地震定位是微地震监测的核心任务,面对当前海量的地震数据,传统的定位方法已无法满足实时定位的需求。为此,本文利用深度学习技术,提出一种基于U-Net网络为主要架构的微地震震源定位方法,通过融合双交叉注意力模块和空间空洞金字塔池化模块,增强网络对微震数据中波形特征的提取能力,提升震源位置预测精度。最后,利用简单层状和复杂速度模型生成合成数据进行实验测试,并与U-Net和Att-Unet网络对震源位置预测误差精度进行对比分析。结果表明,本文所构建的网络模型在震源预测精度以及网络性能上均优于其他网络模型,并且对低信噪比的微地震数据也有较好的预测效果。

    Abstract:

    Microseismic source location is the core task of microseismic monitoring. Faced with the current massive seismic data, traditional location methods are unable to meet the demand for real-time location. Therefore, this paper employs deep learning technology and proposes a microseismic source location method based on the U-Net network as the primary architecture. By integrating dual crossed attention modules and spatial dilated pyramid pooling modules, the network’s ability to extract waveform features from microseismic data is enhanced, thereby improving the prediction accuracy of the seismic source location. Finally, experiments are conducted using synthetic data generated from simple layered and complex velocity models. The prediction error accuracy of the source location is compared and analyzed with the U-Net and Att-Unet networks. The results indicate that the network model constructed in this paper surpasses other network models in terms of prediction accuracy and network performance, and also exhibits favorable prediction effects on microseismic data with low signal-to-noise ratios.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-12
  • 最后修改日期:2025-04-14
  • 录用日期:2025-04-14
  • 在线发布日期:
  • 出版日期:
文章二维码