基于混合神经网络的水合物无机盐抑制剂浓度预测研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TE832

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水合物无机盐抑制剂浓度与抑制效果、生产成本和设备腐蚀情况等密切相关,对其进行预测至关重要。以NaCl浓度预测为例,将核主成分分析(KPCA)处理后的温度、压力和气体组分作为输入参数,利用小波神经网络(WNN)对NaCl浓度进行预测,并通过遗传算法(GA)、模拟退火算法(SA)和AdaBoost算法对WNN进行优化,建立了AdaBoost-GASA-WNN水合物抑制剂NaCl浓度预测模型,解决了目前没有针对水合物无机盐抑制剂浓度预测方法的问题。结果表明,经过KPCA处理后模型的均方误差(MSE)降低了3.8658,优化后模型的MSE进一步降低到9.5062,与ELM、KNN、RF模型和数据拟合方法相比,MSE分别低5.7994、17.7416、2.912和8.8105,预测效果最好,可为水合物防治过程中无机盐抑制剂浓度的确定提供一定的借鉴和参考。

    Abstract:

    The concentration of hydrate inorganic salt inhibitors is closely related to inhibition efficiency, production cost, and equipment corrosion. Therefore, predicting the concentration of hydrate inorganic salt inhibitors is great significance. Taking the prediction of NaCl concentration as an example, the temperature, pressure, and gas components processed by Kernel Principal Component Analysis (KPCA) were used as input parameters. The Wavelet Neural Network (WNN) was utilized to predict the NaCl concentration, and the WNN was optimized by the Genetic algorithm (GA), Simulated annealing algorithm (SA), and AdaBoost algorithm. The AdaBoost-GASA-WNN prediction model for the concentration of the hydrate inhibitor NaCl was established, addressing the current lack of methods for predicting the concentration of inorganic salt inhibitors for hydrates. The results show that the model"s Mean Square Error (MSE) decreased by 3.8658 after KPCA processing, and the MSE of the optimized model was further reduced to 9.5062. Compared with the ELM, KNN, RF, and data fitting methods, the MSE declined by 5.7994, 17.7416, 2.912, and 8.8105, respectively. This indicates the best prediction performance of the AdaBoost-GASA-WNN prediction model, providing a reference for determining the concentration of inorganic salts in hydrate prevention and control.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-21
  • 最后修改日期:2025-04-16
  • 录用日期:2025-05-19
  • 在线发布日期:
  • 出版日期:
文章二维码