基于Granger-LSTM模型的东营凹陷页岩油产能预测研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    页岩油水平井生产动态变化复杂,现有预测技术难以达到理想精度。以东营凹陷为研究区域,本研究基于X1和X2两口井的生产数据,首先采用 Granger 因果分析筛选与页岩油产量高度相关的时间动态因子,优化模型输入特征;随后,利用长短期记忆网络(LSTM)构建产量预测模型,并通过粒子群算法优化超参数,同时对比循环神经网络(RNN)、门控循环单元(GRU)和时空卷积网络(TCN)的预测性能。研究结果表明,特征选择对产量预测至关重要,以井X1的 LSTM 模型为例,基于 Granger 分析的特征筛选方法使均方根误差较基于 Spearman 分析的方法降低了 3.41 m3,显著提升了预测精度。尽管多种时序模型均展现出良好的预测性能,但相比之下LSTM 在捕捉时间序列动态特征方面表现最佳,为复杂页岩油产量预测提供了可靠的理论依据与技术支持。

    Abstract:

    The production dynamics of shale oil horizontal wells are highly complex, and existing prediction techniques often fail to achieve satisfactory accuracy. Taking the Dongying Depression as the study area, this research utilizes production data from wells X1 and X2. First, Granger causality analysis is employed to identify time-dynamic factors highly correlated with shale oil production, optimizing the model input features. Subsequently, a Long Short-Term Memory (LSTM) network is utilized to construct the production prediction model, with its hyperparameters optimized using the Particle Swarm Optimization (PSO) algorithm. The predictive performance of LSTM is compared with Recurrent Neural Networks (RNN), Gated Recurrent Units (GRU), and Temporal Convolutional Networks (TCN). The results demonstrate the critical importance of feature selection for production prediction. For instance, in the case of well X1, the LSTM model based on Granger analysis reduced the root mean square error (RMSE) by 3.41 m3 compared to the model using features selected via Spearman analysis, significantly improving prediction accuracy. While various time-series models exhibit strong predictive capabilities, the LSTM model outperforms others in capturing dynamic characteristics of time series, providing a robust theoretical foundation and technical support for complex shale oil production forecasting.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-06
  • 最后修改日期:2025-03-25
  • 录用日期:2025-03-26
  • 在线发布日期:
  • 出版日期:
文章二维码