en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

代鹏程(1986-),男,副教授,博士,研究方向为氢能关键材料及氢化工。E-mail: dpcapple@upc.edu.cn。

通信作者:

顾鑫(1987-),男,副教授,博士,博士生导师,研究方向为先进储能器件。E-mail: guxin@upc.edu.cn。

中图分类号:TQ50.4

文献标识码:A

文章编号:1673-5005(2025)01-0227-08

DOI:10.3969/j.issn.1673-5005.2025.01.025

参考文献 1
LEBROUHI B E,DJOUPO J J,LAMRANI B,et al.Global hydrogen development:a technological and geopolitical overview [J].International Journal of Hydrogen Energy,2022,47(11):7016-7048.
参考文献 2
WANNEK C,LEHNERT W,MERGEL J.Membrane electrode assemblies for high-temperature polymer electrolyte fuel cells based on poly(2,5-benzimidazole)membranes with phosphoric acid impregnation via the catalyst layers [J].Journal of Power Sources,2009,192(2):258-66.
参考文献 3
YI S,ZHANG F,LI W,et al.Anhydrous elevated-temperature polymer electrolyte membranes based on ionic liquids [J].Journal of Membrane Science,2011,366(1/2):349-355.
参考文献 4
孙良良,熊宏旭,丁国鹏,等.直接液化石油气火焰燃料电池的制备与性能[J].中国石油大学学报(自然科学版),2022,46(5):183-188.SUN Liangliang,XIONG Hongxu,DING Guopeng,et al.Preparation and performance of direct liquefied petroleum gas fuel cells[J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(5):183-188.
参考文献 5
YAN W M,SONG C Y,CHEN F,et al.Effects of flow distributor geometry and diffusion layer porosity on reactant gas transport and performance of proton exchange membrane fuel cells [J].Journal of Power Sources,2004,125(1):27-39.
参考文献 6
XU T,HUANG H,LU T,et al.Monitoring of anodic corrosion on carbon-based gas diffusion layer in a flow cell [J].Carbon,2023,205:207-213.
参考文献 7
ZHANG G,QU Z,WANG Y.Proton exchange membrane fuel cell of integrated porous bipolar plate-gas diffusion layer structure:entire morphology simulation [J].eTransportation,2023,17:100250.
参考文献 8
张伟,汪树军,刘红研,等.燃料电池专用碳纸功能添加剂的合成及聚合反应的研究[J].石油大学学报(自然科学版),2005,29(6):110-112,118.ZHANG Wei,WANG Shujun,LIU Hongyan,et al.Study on synthesis and polymerization of functional additive for carbon paper designed especially for fuel cell [J].Journal of the University of Petroleum,China(Edition of Natural Science),2005,29(6):110-112,118.
参考文献 9
ARVAY A,YLI-RANTALA E,LIU C H,et al.Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells:a review[J].Journal of Power Sources,2012,213:317-337.
参考文献 10
黄乃科,王曙中,李灵忻.质子交换膜燃料电池电极用气体扩散层材料[J].电源技术,2003,27(3):329-332.HUANG Naike,WANG Shuzhong,LI Lingxi.Gas diffusion layer for electrodes in proton exchange membrane fuel cell[J].Chinese Journal of Power Sources,2003,27(3):329-332.
参考文献 11
YANG Z,DU Q,JIA Z,et al.Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model[J].Energy,2019,183:462-476.
参考文献 12
BURGANOS V N,SKOURAS E D,KALARAKIS A N.An integrated simulator of structure and anisotropic flow in gas diffusion layers with hydrophobic additives[J].Journal of Power Sources,2017,365:179-189.
参考文献 13
GHOBADI S,IŞ1KEL ŞANL1 L,BAKHTIARI R,et al.Green composite papers via use of natural binders and graphene for PEM fuel cell electrodes[J].ACS Sustainable Chemistry & Engineering,2017,5(9):8407-8415.
参考文献 14
YARAR KAPLAN B,IŞ1KEL ŞANL1 L,ALKAN GüRSEL S.Flexible carbon-cellulose fiber-based composite gas diffusion layer for polymer electrolyte membrane fuel cells[J].Journal of Materials Science,2017,52(9):4968-4976.
参考文献 15
KINUMOTO T,MATSUMURA T,YAMAGUCHI K,et al.Material processing of bamboo for use as a gas diffusion layer in proton exchange membrane fuel cells [J].ACS Sustainable Chemistry & Engineering,2015,3(7):1374-1380.
参考文献 16
DESTYORINI F,IRMAWATI Y,WIDODO H,et al.Properties and performance of gas diffusion layer PEMFC derived from coconut coir[J].Journal of Engineering and Technological Sciences,2018,50(3):409-419.
参考文献 17
李小可,崔瑞,何澄,等.生物质水凝胶蒸发器的制备及其太阳能脱盐性能[J].中国石油大学学报(自然科学版),2023,47(4):168-173.LI Xiaoke,CUI Rui,HE Cheng,et al.Preparation of solar-powered hydrogel evaporator and its solar desalination performance[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(4):168-173.
参考文献 18
INDAYANINGSIH N,ZULFIA A,PRIADI D,et al.Preparation of carbon composite from coconut fiber for gas diffusion layer [J].Ionics,2016,22(8):1445-1449.
参考文献 19
SUN J,WU Z,MA C,et al.Biomass-derived tubular carbon materials:progress in synthesis and applications [J].Journal of Materials Chemistry A,2021,9(24):13822-13850.
参考文献 20
MAO J,LIU P,LI J,et al.Accelerated intermediate conversion through nickel doping into mesoporous Co-N/C nanopolyhedron for efficient ORR [J].Journal of Energy Chemistry,2022,73:240-247.
参考文献 21
MOLAEIMANESH G R,DAHMARDEH M.Pore-scale analysis of a PEM fuel cell cathode including carbon cloth gas diffusion layer by lattice Boltzmann method [J].Fuel Cells,2021,21(3):208-20.
参考文献 22
MOLAEIMANESH G R,AKBARI M H.A three-dimensional pore-scale model of the cathode electrode in polymer-electrolyte membrane fuel cell by lattice Boltzmann method [J].Journal of Power Sources,2014,258:89-97.
参考文献 23
MUñOZ R,GóMEZ-ALEIXANDRE C.Review of CVD synthesis of graphene [J].Chemical Vapor Deposition,2013,19(10/11/12):297-322.
参考文献 24
ZHAO H,LIU B,ZHANG K,et al.Microstructure analysis of zirconium carbide layer on pyrocarbon-coated particles prepared by zirconium chloride vapor method [J].Nuclear Engineering and Design,2012,251:443-448.
参考文献 25
STEVIE F A,DONLEY C L.Introduction to X-ray photoelectron spectroscopy[J].Journal of Vacuum Science & Technology A,2020,38(6):063204.
参考文献 26
LIU G,CHENG L,LI K,et al.Damage behavior of atomic oxygen on zirconium carbide coating modified carbon/carbon composite [J].Ceramics International,2020,46(3):3324-3331.
参考文献 27
FANG D,WANG C,LÜ C,et al.XPS studies of surface oxidation of metal carbides [J].Fullerenes,Nanotubes and Carbon Nanostructures,2021,30(7):718-726.
参考文献 28
SALAHUDDIN M,UDDIN M N,HWANG G,et al.Superhydrophobic PAN nanofibers for gas diffusion layers of proton exchange membrane fuel cells for cathodic water management [J].International Journal of Hydrogen Energy,2018,43(25):11530-11538.
参考文献 29
CRUZ-MANZO S,GREENWOOD P.Analytical warburg impedance model for EIS analysis of the gas diffusion layer with oxygen depletion in the air channel of a PEMFC [J].Journal of The Electrochemical Society,2021,168(7):074502.
参考文献 30
RESHETENKO T V,BENDER G,BETHUNE K,et al.Effects of local variations of the gas diffusion layer properties on PEMFC performance using a segmented cell system[J].Electrochimica Acta,2012,80:368-376.
参考文献 31
PARK J,OH H,LEE Y I,et al.Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance [J].Applied Energy,2016,171:200-212.
目录contents

    摘要

    质子交换膜燃料电池气体扩散层制备工艺存在制备成本高、需要进行疏水处理、生产流程复杂等缺点,以纤维素棉布为原料,在较低温度(1350 ℃)下生成一种高导电、高孔隙率、自疏水的柔性生物质碳布,并将其作为气体扩散层,测试燃料电池性能。结果表明:碳布由相互连接的微米级碳纤维组成,形成丰富的孔道,其孔隙率达到76%;通过锆基化合物催化的化学气相沉积,在碳纤维表面化学沉积高石墨化程度的碳纳米片阵列,提高了碳布的导电性,使得其平面电阻率低至60.8 mΩ·cm,穿透电阻率在1 MPa压力下低至19 mΩ·cm,导电性达到商业气体扩散层的要求;将制备的碳布直接作为气体扩散层进行燃料电池性能测试,其在1.2 A·cm-2处功率密度达到0.6 W·cm-2,超过相同条件下的商业化气体扩散层(0.58 W·cm-2)。

    Abstract

    The preparation process of gas diffusion layer (GDL) in proton exchange membrane fuel cells has disadvantages, such as high manufacturing costs, the need for hydrophobic treatment, and a complicated synthetic process. A flexible biomass carbon cloth with high conductivity, high porosity, and self hydrophobicity was generated from cellulose cotton cloth at a lower temperature (1350 ℃), and used as a gas diffusion layer to evaluate the performance of fuel cells. The results demonstrate that the carbon cloth is composed of interconnected micron-sized carbon fibers with abundant pores, achieving a porosity of 77 %. By catalytic chemical vapor deposition using zirconium-based compounds, highly graphitized carbon nanosheets are chemically deposited on the surface of carbon fibers, enhancing the electrical conductivity of the carbon cloth. As a result, the in-plane resistance is as low as 60.8 mΩ·cm, and the through-plane resistance is as low as 19 mΩ·cm under a pressure of 1 MPa, meeting the electrical conductivity requirement of commercial GDLs. When the prepared carbon cloth is directly used as a GDL for fuel cell performance testing, its power density reaches 0.6 W·cm-2 at 1.2 A·cm-2, exceeding the power density of commercial GDLs under the same conditions (0.58 W·cm-2).

  • 氢燃料电池是实现氢能向电能转换的关键载体,以其高效、无污染、无噪声、可靠性高、对负载变化快速响应等显著优点[1-4]。作为氢燃料电池的关键部件之一,气体扩散层承担着均匀扩散气体、传导电子、水分排出、支撑电极结构等作用[5-8]。为满足燃料电池需求,气体扩散层应当具有高透气性、高导电性、高疏水性和一定机械强度[9]。用来制备燃料电池气体扩散层的材料主要是以高导电碳纤维为原料制成的碳纸或碳布[10]。目前导电碳纤维主要是将聚丙烯腈(PAN)纤维进行高温石墨化(2 500~3 000℃)等流程制备[10],但原料成本及能耗高。为了将燃料电池运行过程产生的水排出,防止催化剂水淹,需要将这些材料浸渍在聚四氟乙烯等疏水剂中处理来提高材料的疏水性[11],这样制得的气体扩散层,疏水剂大多堆积在气体扩散层表面,而无法渗透到气体扩散层内部,表面疏水剂的过量聚集,影响了气体扩散层本身的导电性和透气性[12]。以生物质材料衍生的碳材料取代PAN碳纤维制备气体扩散层具有极大的成本优势[13-17]。Kinumoto等[15]提出一种基于植物的GDL(气体扩散层)可持续生产方法,以竹纤维为原材料,通过脱木质素、去纤维、成型和碳化等工艺制备用于质子交换膜燃料电池的气体扩散层,其最大输出功率可与市售碳纸相当。Destyorini等[16]以椰壳为原材料,制备成碳颗粒和碳纤维成功生产了碳复合纸,具有较低的孔隙率、良好的导电率和较大的水接触角,在燃料电池应用中表现出良好的性能。但是生物质材料氧含量高,难以石墨化,通过传统碳化过程衍生的碳材料机械性能低、导电性差、没有疏水性能,无法满足燃料电池的气体扩散层的性能要求[18-19]。笔者借助锆基化合物催化的化学气相沉积技术,通过简单的一步热处理过程,将常见的纤维素棉布转化成碳纤维布,并将碳布直接作为气体扩散层进行燃料电池性能测试。

  • 1 试验

  • 1.1 试验试剂与仪器

  • 药品与试剂:氯化锆,国药集团化学试剂有限公司;商业Pt/C催化剂(质量分数为20%),Sigma-Aldrich (中国);Nafion 溶液(质量分数为5%)和聚四氟乙烯分散液 (质量分数为60%),Dupont(美国);Vulcan XC 72R (质量分数为99.9%),Johnson Matthey;甲醇,上海国药集团化学试剂有限公司;去离子水,实验室自制。

  • 仪器:电化学工作站CS350H,武汉科思特仪器股份有限公司;Land电池测试系统 CT-2001A,武汉金诺电子有限公司;手套箱Lab2000,合肥科晶有限公司;多晶粉末X射线衍射仪X’Pert PRO MPD,荷兰帕纳科公司;扫描电子显微镜S4800,日本日立;透射电子显微镜JEM-2100UHR,日本电子;X射线光电子能谱仪Escalab250Xi,美国赛默飞世尔科技有限公司;氮气吸脱附等温线测定仪ASAP2020,美国麦克仪器公司;压汞仪AutoPore V 9600,美国Micromeritics公司;四探针电导率测试仪RTS-8,中国广州四探针科技有限公司;水接触角测试仪SDC-350Z,东莞市晟鼎精密仪器有限公司。

  • 1.2 材料制备与表征

  • 将纤维素棉布裁剪成5 cm×5 cm,用乙醇和去离子水反复清洗,然后于烘箱中干燥后备用。称取ZrCl4(0.324 g)溶解在10 mL乙醇中,超声15 min,使其充分溶解在乙醇中,作为浸渍液。取出干燥好的纤维素棉布,放到培养皿上,然后用滴管吸取浸渍液,将浸渍液均匀滴涂在干燥好的纤维素棉布上。将完全浸渍的纤维素棉布放入60℃烘箱干燥,得到生物质碳布前体。将干燥好的生物质碳布前体放入管式炉中,先用氩气置换管式炉内空气,然后在5%的氢氩气氛(氢气体积分数为5%)下,气体流速为50 mL/min,以10℃/min升温到1 000℃,保持1 h,然后以10℃/min升温到1350℃,在氩氢气氛保持不变的情况下,将气速为5 mL/min的甲烷气氛通入管式炉,保持1 h。然后关闭甲烷气氛,降温,得到CVD-Zr-CC。

  • 为进行对比,将纤维素棉布用乙醇和去离子水反复清洗干燥后,直接将其放入管式炉按相同的升温程序升温到1350℃,然后在氩氢气氛保持不变的情况下,将甲烷气氛通入管式炉,保持1 h,然后关闭甲烷气氛,降温,命名为CVD-CC。另取纤维素棉布清洗干燥后,经过与上述样品同样的步骤进行相同处理,但是在到达1350℃时不通入甲烷气体,保持1 h,命名为CC。采购日本东丽株式会社生产的商业化气体扩散层(TGP-H-060)作为进一步对比样,命名为C-GDL。

  • 采用X射线衍射仪对材料的物相及晶体结构进行表征。采用拉曼光谱仪对材料的石墨化程度和碳材料的缺陷进行表征。采用扫描电子显微镜对材料的微观形貌进行表征。采用透射电子显微镜对材料的形貌及金属组分进行细致表征。采用X射线光电子能谱对材料的组成、元素含量及价态等信息进行表征。采用压汞仪表征材料的孔隙率和孔径分布。采用四探针电导率测试仪测试碳布表面的电导率。采用东莞市晟鼎精密仪器有限公司的SDC-350Z水接触角测试仪测试碳布表面疏水性。

  • 1.3 燃料电池性能测试

  • 将配制好的微孔层浆料用刮刀涂覆在碳布的一面,在350℃空气气氛下保持30 min,得到涂覆微孔层的气体扩散层。将其放在喷涂催化剂的质子交换膜(CCM,质子交换膜为Gore M788.12,阴阳极催化剂均为负载量为0.5 mgPt·cm-2的Pt/C催化剂)两侧,在120℃,300 N/cm2的压力下加热2 min,制备成膜电极。

  • 将膜电极放在燃料电池测试夹具中进行测试。测试之前在阴阳极管道通入30 min的氮气,然后往阳极管道通入50 mL/min的氢气,保持1 h。活化阶段,电池温度升至60℃,电池保持0.4 V恒压放电保持24 h,让MEA充分活化。单电池极化曲线测试中,阳极为氢气,由氢气发生器提供,流量为100 mL/min,阴极为氧气,由纯氧气瓶提供,气体流量为70 mL/min,阴阳极背压保持在0.05 MPa的状态下对电池进行极化曲线的测试。单电池阻抗测试是由电化学工作站测试的,测试频率范围为1 MHz~0.1 Hz,测试电压为0.6 V。测试GDL耐腐蚀性能测试的测试条件:恒电压放电,电压保持在0.6 V,电池温度为65℃,氢气流量60 mL/min,氧气流量50 mL/min。

  • 2 结果分析

  • 图1为CVD-Zr-CC的数码照片、XRD谱图样品的拉曼谱图。由图1(a)看出,CVD-Zr-CC具有很好的柔性,可以180°弯曲、卷绕、折叠,不会出现开裂、破碎等结构退化现象。由图1(b)看出,图谱中2θ 为 26°和42°处的衍射峰,分别对应碳的 (002)和(100)晶面,无纤维素的特征峰,说明纤维素完全碳化。此外从图中可以看出对应于四方晶系ZrO2、单斜晶系的ZrO2和ZrC的衍射峰,说明ZrCl4在制备过程中转变为了ZrC和ZrO2。由图1(c)看出,在1360、1600和2600 cm-1有3个明显的拉曼峰,分别对应碳材料的D峰、G峰和2D峰。D峰与G峰的强度比(ID/IG)可以看作是对材料石墨化程度的表征,比值越低说明材料的石墨化程度越高,结构相对规整[20]。从谱图中可以看出CC的ID/IG为1.27,石墨化程度较低。CVD-CC的ID/IG降低到了1.02,说明增加了CVD过程后,在碳纤维表面沉积了石墨化程度较高的碳材料,CVD-Zr-CC的ID/IG的比值为0.43,远远低于其他两种对比样,且出现了非常明显的2D峰,说明Zr基化合物的存在,会催化生物质碳形成更为规整的碳结构,大幅提高了碳材料的石墨化程度。

  • 图1 CVD-Zr-CC数码照片和XRD谱图以及样品的拉曼谱图

  • Fig.1 Digital photograph, XRD pattern of CVD-Zr-CC and Roman patterns of samples

  • 为了观察材料表面的形貌结构,对材料进行扫描电镜(SEM)和透射电镜(TEM)分析。图2(a)~(d)为CVD-Zr-CC不同放大倍率的SEM谱图; 图2(e)为CC的SEM谱图; 图2(f)为CVD-CC的SEM谱图; 图2(g)、(h)为CVD-Zr-CC的HRTEM图。图2显示了CVD-Zr-CC的多级结构。首先,从表面形貌观察,碳布表面保留了生物质棉布的纤维编织结构,单根纤维的直径为10~20 μm,并且热解过程没有破坏的棉纤维的基本结构。其次,观察单根纤维,发现在碳纤维表面生长了分布非常均匀的碳纳米片,纳米片厚度约为17 nm。碳纳米片相互之间连接,在碳纤维表面形成了一层多孔阵列纳米结构,结合碳纤维的纤维编织结构,这种多级结构的碳布将有助于反应中的电子的传输和传质过程[21-22]。为了进一步研究该纳米片生成机制,对没有经过CVD过程只进行热解过程的CC和没有Zr基化合物参与CVD过程的CVD-CC也分别进行了SEM表征。由图2(e)看出,没有经过CVD过程的CC的纤维呈现光滑的表面,而CVD-CC的碳布纤维表面生成了大量的碳颗粒和卷曲的碳纳米管(图2(f)),并且其分布不均匀。这一结果说明甲烷与氢气在高温下反应生成单质碳[23],CVD沉积在可以附着的位置,而Zr基化合物的存在催化了碳的形成和沉积,最终形成了均匀分布的纳米片阵列结构[24]。由图2(g)、(h)看出,主要的晶格对应石墨碳的(002)晶面,说明是通过化学气相沉积生成碳纤维表面纳米片主要为石墨碳,并且石墨碳的存在包覆住了内部的ZrC,防止其被氧化。

  • 图2 样品的扫描电镜和透射电镜图片

  • Fig.2 SEM images and TEM images of samples

  • 图3 CVD-Zr-CC的内部和表面的XPS衍射全谱图

  • Fig.3 XPS survey spectrums for the inside and surface of CVD-Zr-CC

  • 因为XPS是对样品表面10~30 nm深度的元素组成进行分析[25],为验证样品表面与样品内部的不同成分,对碳布表面以及碳布进行研磨后暴露内部成分的样品分别进行XPS分析。图3为CVD-Zr-CC的内部和表面的XPS衍射全谱图,可以看出样品表面只含有C 1s和O 1s的衍射峰,不含有Zr 3d的明显衍射峰,说明表面的碳纳米片主要是由碳组成,是化学气相沉积的产物。而研磨后的碳布样品明显看出含有Zr 3d的衍射峰。这说明Zr元素主要存在于碳布内部。结合制备过程和文献报道[26-27]可以推断,经过浸渍干燥过程后,ZrCl4留在纤维表面,而后经过碳化和化学气相沉积处理,在形成的Zr基化合物外面生长了碳纳米片。

  • 图4 水接触角测试结果

  • Fig.4 Result of water contact angle test

  • 燃料电池运行过程中产生的水需尽快经由气体扩散层排出,避免造成催化剂水淹失活等问题,因此要求气体扩散层必须要具备高程度的疏水性[28]。水接触角测试结果见图4。可以看出,CVD-Zr-CC的水接触角高达151.76°,说明纤维表面碳纳米片阵列结构形成的荷叶效应使CVD-Zr-CC表面产生了高疏水性。CVD-CC纤维表面的碳颗粒和卷曲的碳纳米管也能为其提供粗糙的表面结构,因而其水接触角也达到了142.15°。而CC的纤维表面较为光滑,且表现出很强的亲水性,其水接触角为0°。相同条件下测试的商业化气体扩散层(C-GDL)的水接触角为129.94°。以上结果说明,CVD-Zr-CC的疏水性明显优于输水处理后的商业化气体扩散层,可以不用进行疏水处理直接作为气体扩散层用于燃料电池。

  • 图5 样品的平面电阻率、穿透电阻率以及孔径分布

  • Fig.5 In-plane resistivities image, through-plane resistivities image and pore size distribution image of samples

  • 因为燃料电池产生的电子也需经过气体扩散层导出,导电性是衡量一个材料是否可以用于燃料电池气体扩散层的另一个重要指标[22]。通过测试样品的平面电阻率和透过电阻率来评价气体扩散层材料导电性。平面电阻率使用四探针电阻仪直接测试。图5为样品的平面电阻率,穿透电阻率以及孔径分布。由图5(a)看出,直接碳化制得的碳布CC导电性较差,其平面电阻率高达280.6 mΩ·cm。CVD-CC经过了CVD碳沉积,平面电阻率降低到了101.6 mΩ·cm。CVD-Zr-CC的石墨化程度最高,其平面电阻率也最低,仅为60.8 mΩ·cm。碳布的穿透电阻率采用国标规定的阶梯式压强法(图5(b)插图)测试。测试结果显示,在未施加压力时,CVD-Zr-CC的穿透电阻率为66 mΩ·cm,远低于CVD-CC(220 mΩ·cm)和CC(842 mΩ·cm),当施加压力到达1 MPa时,其穿透电阻率进一步降低,达到了19 mΩ·cm,说明CVD-Zr-CC具有优秀的导电性,适合作为燃料电池的气体扩散层材料。

  • 气体扩散层的孔隙率决定了其均匀扩散反应气体的能力,利用压汞法对样品的孔隙率进行分析。CVD-Zr-CC的孔隙率达到了76.83 %,高于商业气体扩散层C-GDL的70.64 %,并且从孔径分布图来看CVD-Zr-CC的孔主要分布在10 μm以上,大孔径的孔居多,并且大部分孔为2~60 μm,非常适合气体的快速扩散。而商业气体扩散层的孔径大部分分布在1~20 μm,在20 μm以上的孔数量就明显不如CVD-Zr-CC。孔隙率的提高和孔径分布的优化,使得CVD-Zr-CC更能满足气体扩散层均匀扩散气体的要求。

  • 为进一步研究CVD-Zr-CC作为燃料电池气体扩散层的潜力,将其未进行疏水处理,直接涂覆微孔层之后与CCM一起制备成MEA,来测试其单电池状态下的性能。为了进行对比,将CVD-CC通过同样的处理,同时与商业化的气体扩散层C-GDL进行比较。图6为样品的氢氧燃料电池性能。由图6(a)看出,CVD-Zr-CC的极化曲线明显高于CVD-CC和C-GDL的单电池极化曲线。虽然三者开始的极化曲线相近,但是当电压到达约0.6~0.4 V时CVD-CC和C-GDL的极化曲线明显下降,在这个电压区间主要是由电池的欧姆阻抗所控制,推测这部分电压下降是因为电池的内阻对电池电压造成了影响。通过之前对电阻率的测试,CVD-CC的平面电阻和透过电阻相比CVD-Zr-CC还是较大,造成了电池内阻的增大,即使升高温度促进电池内部化学反应的加快,还是较难提升电池的性能,于是极化曲线低于CVD-Zr-CC。功率密度曲线(图6(b))表明单电池能够到达的最大功率密度以及其所对应的电流密度,CVD-CC的功率密度,曲线在电流为0.9 A/cm2处达到峰值0.45 W/cm2,CVD-Zr-CC在电流为0.9 A/cm2处时,功率密度达到0.5 W/cm2,在1.2 A/cm2时,其功率密功率可达到0.6 W/cm2,高于C-GDL的功率密度0.54 W/cm2

  • 为了确定极化曲线的欧姆损失的原因,对3种气体扩散层组成的单电池在0.6 V时进行电化学阻抗试验(EIS)。如图6(c)所示, x轴的第一个交点代表电池的高频电阻(RΩ),其中包括质子交换膜和催化层中的质子电阻,MEA和GDL之间的接触电阻,以及GDL的电子电阻。x轴的第二个交点和第一个交点之间的差值代表电荷传输阻力(Rct,A)和质量传输阻力(Rct,C)的和;第二个交点代表总阻力(RΩ+Rct,A +Rct,C[29-30]。根据图6(c)插图中等效电路的拟合结果如表1所示,CVD-Zr-CC的RΩRct,ARct,C均低于CVD-CC,与C-GDL相当,说明CVD-Zr-CC具有更小的电荷传输阻力和质量传输阻力以及高频电阻,从而使得其燃料电池性能明显高于CVD-CC。

  • 图6 样品的氢氧燃料电池性能

  • Fig.6 Hydrogen-oxygen fuel cell performance chart of samples

  • 表1 CVD-Zr-CC,CVD-CC和C-GDL作为PEMFC的气体扩散层的EIS性能

  • Table1 EIS electrochemical properties of PEMFCs using CVD-Zr-CC, CVD-CC and C-GDL

  • 在燃料电池高湿度高温度的情况下难免会发生表面碳的腐蚀、脱落,工作时间过长,腐蚀加剧,造成气体扩散层表面粗糙程度增加,气体扩散层与催化层的贴合程度下降,增加电池内阻,从而造成电池电流的下降[31]。通过在0.6 V下进行长时间的恒压放电观察电池电流的变化(电流-时间(i-t)曲线),对电池的稳定性进行分析。如图6(d)所示,因为CVD-Zr-CC具有更低的电池内阻,所以其0.6 V时对应的电流密度要高于CVD-CC和C-GDL。另外, CVD-CC的i-t曲线显示出较多的毛刺,说明其在电池运行过程中电流运行不平稳。这可能是由于CVD-CC表面的碳纳米结构分布不均匀,在电池过程中难免造成碳纳米管和碳颗粒的脱落造成气体扩散层的疏水性和导电性波动,造成了电池内阻的变化。与之相比,CVD-Zr-CC具有平稳的i-t曲线,且经过20 h稳定性测试后,仍能继续平稳运行,说明没有出现结构破损和内阻增加等问题,是一种性能优秀的气体扩散层材料。

  • 3 结论

  • (1)以纤维素棉布为原材料,通过简单的一步热处理过程,制备低成本、高性能的生物质碳布。碳布由相互连接的微米级碳纤维组成,形成丰富的孔道,其孔隙率达到76%。

  • (2)通过锆基化合物催化的化学气相沉积法在碳布纤维表面生长了分布均匀的高石墨化碳纳米片阵列,提升了生物质碳布的导电性,其平面电阻率为60.8 mΩ·cm,穿透电阻率在1 MPa压力下低至19 mΩ·cm,达到商业气体扩散层的要求。

  • (3)在0.5 mgPt/cm2的PtC催化剂的负载量下,组装的燃料电池在1.2 A/cm2电流密度时功率达到0.6 W/cm2,超过相同条件下的商业化气体扩散层(0.58 W/cm2),且在20 h的单电池运行过程中i-t曲线运行平稳。

  • 参考文献

    • [1] LEBROUHI B E,DJOUPO J J,LAMRANI B,et al.Global hydrogen development:a technological and geopolitical overview [J].International Journal of Hydrogen Energy,2022,47(11):7016-7048.

    • [2] WANNEK C,LEHNERT W,MERGEL J.Membrane electrode assemblies for high-temperature polymer electrolyte fuel cells based on poly(2,5-benzimidazole)membranes with phosphoric acid impregnation via the catalyst layers [J].Journal of Power Sources,2009,192(2):258-66.

    • [3] YI S,ZHANG F,LI W,et al.Anhydrous elevated-temperature polymer electrolyte membranes based on ionic liquids [J].Journal of Membrane Science,2011,366(1/2):349-355.

    • [4] 孙良良,熊宏旭,丁国鹏,等.直接液化石油气火焰燃料电池的制备与性能[J].中国石油大学学报(自然科学版),2022,46(5):183-188.SUN Liangliang,XIONG Hongxu,DING Guopeng,et al.Preparation and performance of direct liquefied petroleum gas fuel cells[J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(5):183-188.

    • [5] YAN W M,SONG C Y,CHEN F,et al.Effects of flow distributor geometry and diffusion layer porosity on reactant gas transport and performance of proton exchange membrane fuel cells [J].Journal of Power Sources,2004,125(1):27-39.

    • [6] XU T,HUANG H,LU T,et al.Monitoring of anodic corrosion on carbon-based gas diffusion layer in a flow cell [J].Carbon,2023,205:207-213.

    • [7] ZHANG G,QU Z,WANG Y.Proton exchange membrane fuel cell of integrated porous bipolar plate-gas diffusion layer structure:entire morphology simulation [J].eTransportation,2023,17:100250.

    • [8] 张伟,汪树军,刘红研,等.燃料电池专用碳纸功能添加剂的合成及聚合反应的研究[J].石油大学学报(自然科学版),2005,29(6):110-112,118.ZHANG Wei,WANG Shujun,LIU Hongyan,et al.Study on synthesis and polymerization of functional additive for carbon paper designed especially for fuel cell [J].Journal of the University of Petroleum,China(Edition of Natural Science),2005,29(6):110-112,118.

    • [9] ARVAY A,YLI-RANTALA E,LIU C H,et al.Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells:a review[J].Journal of Power Sources,2012,213:317-337.

    • [10] 黄乃科,王曙中,李灵忻.质子交换膜燃料电池电极用气体扩散层材料[J].电源技术,2003,27(3):329-332.HUANG Naike,WANG Shuzhong,LI Lingxi.Gas diffusion layer for electrodes in proton exchange membrane fuel cell[J].Chinese Journal of Power Sources,2003,27(3):329-332.

    • [11] YANG Z,DU Q,JIA Z,et al.Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model[J].Energy,2019,183:462-476.

    • [12] BURGANOS V N,SKOURAS E D,KALARAKIS A N.An integrated simulator of structure and anisotropic flow in gas diffusion layers with hydrophobic additives[J].Journal of Power Sources,2017,365:179-189.

    • [13] GHOBADI S,IŞ1KEL ŞANL1 L,BAKHTIARI R,et al.Green composite papers via use of natural binders and graphene for PEM fuel cell electrodes[J].ACS Sustainable Chemistry & Engineering,2017,5(9):8407-8415.

    • [14] YARAR KAPLAN B,IŞ1KEL ŞANL1 L,ALKAN GüRSEL S.Flexible carbon-cellulose fiber-based composite gas diffusion layer for polymer electrolyte membrane fuel cells[J].Journal of Materials Science,2017,52(9):4968-4976.

    • [15] KINUMOTO T,MATSUMURA T,YAMAGUCHI K,et al.Material processing of bamboo for use as a gas diffusion layer in proton exchange membrane fuel cells [J].ACS Sustainable Chemistry & Engineering,2015,3(7):1374-1380.

    • [16] DESTYORINI F,IRMAWATI Y,WIDODO H,et al.Properties and performance of gas diffusion layer PEMFC derived from coconut coir[J].Journal of Engineering and Technological Sciences,2018,50(3):409-419.

    • [17] 李小可,崔瑞,何澄,等.生物质水凝胶蒸发器的制备及其太阳能脱盐性能[J].中国石油大学学报(自然科学版),2023,47(4):168-173.LI Xiaoke,CUI Rui,HE Cheng,et al.Preparation of solar-powered hydrogel evaporator and its solar desalination performance[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(4):168-173.

    • [18] INDAYANINGSIH N,ZULFIA A,PRIADI D,et al.Preparation of carbon composite from coconut fiber for gas diffusion layer [J].Ionics,2016,22(8):1445-1449.

    • [19] SUN J,WU Z,MA C,et al.Biomass-derived tubular carbon materials:progress in synthesis and applications [J].Journal of Materials Chemistry A,2021,9(24):13822-13850.

    • [20] MAO J,LIU P,LI J,et al.Accelerated intermediate conversion through nickel doping into mesoporous Co-N/C nanopolyhedron for efficient ORR [J].Journal of Energy Chemistry,2022,73:240-247.

    • [21] MOLAEIMANESH G R,DAHMARDEH M.Pore-scale analysis of a PEM fuel cell cathode including carbon cloth gas diffusion layer by lattice Boltzmann method [J].Fuel Cells,2021,21(3):208-20.

    • [22] MOLAEIMANESH G R,AKBARI M H.A three-dimensional pore-scale model of the cathode electrode in polymer-electrolyte membrane fuel cell by lattice Boltzmann method [J].Journal of Power Sources,2014,258:89-97.

    • [23] MUñOZ R,GóMEZ-ALEIXANDRE C.Review of CVD synthesis of graphene [J].Chemical Vapor Deposition,2013,19(10/11/12):297-322.

    • [24] ZHAO H,LIU B,ZHANG K,et al.Microstructure analysis of zirconium carbide layer on pyrocarbon-coated particles prepared by zirconium chloride vapor method [J].Nuclear Engineering and Design,2012,251:443-448.

    • [25] STEVIE F A,DONLEY C L.Introduction to X-ray photoelectron spectroscopy[J].Journal of Vacuum Science & Technology A,2020,38(6):063204.

    • [26] LIU G,CHENG L,LI K,et al.Damage behavior of atomic oxygen on zirconium carbide coating modified carbon/carbon composite [J].Ceramics International,2020,46(3):3324-3331.

    • [27] FANG D,WANG C,LÜ C,et al.XPS studies of surface oxidation of metal carbides [J].Fullerenes,Nanotubes and Carbon Nanostructures,2021,30(7):718-726.

    • [28] SALAHUDDIN M,UDDIN M N,HWANG G,et al.Superhydrophobic PAN nanofibers for gas diffusion layers of proton exchange membrane fuel cells for cathodic water management [J].International Journal of Hydrogen Energy,2018,43(25):11530-11538.

    • [29] CRUZ-MANZO S,GREENWOOD P.Analytical warburg impedance model for EIS analysis of the gas diffusion layer with oxygen depletion in the air channel of a PEMFC [J].Journal of The Electrochemical Society,2021,168(7):074502.

    • [30] RESHETENKO T V,BENDER G,BETHUNE K,et al.Effects of local variations of the gas diffusion layer properties on PEMFC performance using a segmented cell system[J].Electrochimica Acta,2012,80:368-376.

    • [31] PARK J,OH H,LEE Y I,et al.Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance [J].Applied Energy,2016,171:200-212.

  • 参考文献

    • [1] LEBROUHI B E,DJOUPO J J,LAMRANI B,et al.Global hydrogen development:a technological and geopolitical overview [J].International Journal of Hydrogen Energy,2022,47(11):7016-7048.

    • [2] WANNEK C,LEHNERT W,MERGEL J.Membrane electrode assemblies for high-temperature polymer electrolyte fuel cells based on poly(2,5-benzimidazole)membranes with phosphoric acid impregnation via the catalyst layers [J].Journal of Power Sources,2009,192(2):258-66.

    • [3] YI S,ZHANG F,LI W,et al.Anhydrous elevated-temperature polymer electrolyte membranes based on ionic liquids [J].Journal of Membrane Science,2011,366(1/2):349-355.

    • [4] 孙良良,熊宏旭,丁国鹏,等.直接液化石油气火焰燃料电池的制备与性能[J].中国石油大学学报(自然科学版),2022,46(5):183-188.SUN Liangliang,XIONG Hongxu,DING Guopeng,et al.Preparation and performance of direct liquefied petroleum gas fuel cells[J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(5):183-188.

    • [5] YAN W M,SONG C Y,CHEN F,et al.Effects of flow distributor geometry and diffusion layer porosity on reactant gas transport and performance of proton exchange membrane fuel cells [J].Journal of Power Sources,2004,125(1):27-39.

    • [6] XU T,HUANG H,LU T,et al.Monitoring of anodic corrosion on carbon-based gas diffusion layer in a flow cell [J].Carbon,2023,205:207-213.

    • [7] ZHANG G,QU Z,WANG Y.Proton exchange membrane fuel cell of integrated porous bipolar plate-gas diffusion layer structure:entire morphology simulation [J].eTransportation,2023,17:100250.

    • [8] 张伟,汪树军,刘红研,等.燃料电池专用碳纸功能添加剂的合成及聚合反应的研究[J].石油大学学报(自然科学版),2005,29(6):110-112,118.ZHANG Wei,WANG Shujun,LIU Hongyan,et al.Study on synthesis and polymerization of functional additive for carbon paper designed especially for fuel cell [J].Journal of the University of Petroleum,China(Edition of Natural Science),2005,29(6):110-112,118.

    • [9] ARVAY A,YLI-RANTALA E,LIU C H,et al.Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells:a review[J].Journal of Power Sources,2012,213:317-337.

    • [10] 黄乃科,王曙中,李灵忻.质子交换膜燃料电池电极用气体扩散层材料[J].电源技术,2003,27(3):329-332.HUANG Naike,WANG Shuzhong,LI Lingxi.Gas diffusion layer for electrodes in proton exchange membrane fuel cell[J].Chinese Journal of Power Sources,2003,27(3):329-332.

    • [11] YANG Z,DU Q,JIA Z,et al.Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model[J].Energy,2019,183:462-476.

    • [12] BURGANOS V N,SKOURAS E D,KALARAKIS A N.An integrated simulator of structure and anisotropic flow in gas diffusion layers with hydrophobic additives[J].Journal of Power Sources,2017,365:179-189.

    • [13] GHOBADI S,IŞ1KEL ŞANL1 L,BAKHTIARI R,et al.Green composite papers via use of natural binders and graphene for PEM fuel cell electrodes[J].ACS Sustainable Chemistry & Engineering,2017,5(9):8407-8415.

    • [14] YARAR KAPLAN B,IŞ1KEL ŞANL1 L,ALKAN GüRSEL S.Flexible carbon-cellulose fiber-based composite gas diffusion layer for polymer electrolyte membrane fuel cells[J].Journal of Materials Science,2017,52(9):4968-4976.

    • [15] KINUMOTO T,MATSUMURA T,YAMAGUCHI K,et al.Material processing of bamboo for use as a gas diffusion layer in proton exchange membrane fuel cells [J].ACS Sustainable Chemistry & Engineering,2015,3(7):1374-1380.

    • [16] DESTYORINI F,IRMAWATI Y,WIDODO H,et al.Properties and performance of gas diffusion layer PEMFC derived from coconut coir[J].Journal of Engineering and Technological Sciences,2018,50(3):409-419.

    • [17] 李小可,崔瑞,何澄,等.生物质水凝胶蒸发器的制备及其太阳能脱盐性能[J].中国石油大学学报(自然科学版),2023,47(4):168-173.LI Xiaoke,CUI Rui,HE Cheng,et al.Preparation of solar-powered hydrogel evaporator and its solar desalination performance[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(4):168-173.

    • [18] INDAYANINGSIH N,ZULFIA A,PRIADI D,et al.Preparation of carbon composite from coconut fiber for gas diffusion layer [J].Ionics,2016,22(8):1445-1449.

    • [19] SUN J,WU Z,MA C,et al.Biomass-derived tubular carbon materials:progress in synthesis and applications [J].Journal of Materials Chemistry A,2021,9(24):13822-13850.

    • [20] MAO J,LIU P,LI J,et al.Accelerated intermediate conversion through nickel doping into mesoporous Co-N/C nanopolyhedron for efficient ORR [J].Journal of Energy Chemistry,2022,73:240-247.

    • [21] MOLAEIMANESH G R,DAHMARDEH M.Pore-scale analysis of a PEM fuel cell cathode including carbon cloth gas diffusion layer by lattice Boltzmann method [J].Fuel Cells,2021,21(3):208-20.

    • [22] MOLAEIMANESH G R,AKBARI M H.A three-dimensional pore-scale model of the cathode electrode in polymer-electrolyte membrane fuel cell by lattice Boltzmann method [J].Journal of Power Sources,2014,258:89-97.

    • [23] MUñOZ R,GóMEZ-ALEIXANDRE C.Review of CVD synthesis of graphene [J].Chemical Vapor Deposition,2013,19(10/11/12):297-322.

    • [24] ZHAO H,LIU B,ZHANG K,et al.Microstructure analysis of zirconium carbide layer on pyrocarbon-coated particles prepared by zirconium chloride vapor method [J].Nuclear Engineering and Design,2012,251:443-448.

    • [25] STEVIE F A,DONLEY C L.Introduction to X-ray photoelectron spectroscopy[J].Journal of Vacuum Science & Technology A,2020,38(6):063204.

    • [26] LIU G,CHENG L,LI K,et al.Damage behavior of atomic oxygen on zirconium carbide coating modified carbon/carbon composite [J].Ceramics International,2020,46(3):3324-3331.

    • [27] FANG D,WANG C,LÜ C,et al.XPS studies of surface oxidation of metal carbides [J].Fullerenes,Nanotubes and Carbon Nanostructures,2021,30(7):718-726.

    • [28] SALAHUDDIN M,UDDIN M N,HWANG G,et al.Superhydrophobic PAN nanofibers for gas diffusion layers of proton exchange membrane fuel cells for cathodic water management [J].International Journal of Hydrogen Energy,2018,43(25):11530-11538.

    • [29] CRUZ-MANZO S,GREENWOOD P.Analytical warburg impedance model for EIS analysis of the gas diffusion layer with oxygen depletion in the air channel of a PEMFC [J].Journal of The Electrochemical Society,2021,168(7):074502.

    • [30] RESHETENKO T V,BENDER G,BETHUNE K,et al.Effects of local variations of the gas diffusion layer properties on PEMFC performance using a segmented cell system[J].Electrochimica Acta,2012,80:368-376.

    • [31] PARK J,OH H,LEE Y I,et al.Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance [J].Applied Energy,2016,171:200-212.

  • 版权所有 中国石油大学学报(自然科学版)编辑部 Copyright©2008 All Rights Reserved
    主管单位:中华人民共和国教育部 主办单位:中国石油大学(华东)
    地址: 青岛市黄岛区长江西路66号中国石油大学期刊社 邮编:266580 电话:0532-86983553 E-mail: journal@upc.edu.cn
    本系统由:北京勤云科技发展有限公司设计