en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

冯家乐(2000-),男,博士研究生,研究方向为油气地球化学。E-mail:fengjiale_upc@163.com。

通信作者:

杨升宇(1986-),男,教授,博士,研究方向为常规和非常规油气地质。E-mail:s.yang@upc.edu.cn。

中图分类号:TE 122.3

文献标识码:A

文章编号:1673-5005(2024)02-0045-12

DOI:10.3969/j.issn.1673-5005.2024.02.005

参考文献 1
赵贤正,周立宏,赵敏,等.陆相页岩油工业化开发突破与实践:以渤海湾盆地沧东凹陷孔二段为例[J].中国石油勘探,2019,24(5):589-600.ZHAO Xianzheng,ZHOU Lihong,ZHAO Min,et al.Breakthrough and practice of industrial development on continental shale oil:a case study on Kong-2 Member in Cangdong Sag,Bohai Bay Basin [J].China Petroleum Exploration,2019,24(5):589-600.
参考文献 2
蒲秀刚,韩文中,周立宏,等.黄骅坳陷沧东凹陷孔二段高位体系域细粒相区岩性特征及地质意义[J].中国石油勘探,2015,20(5):30-40.PU Xiugang,HAN Wenzhong,ZHOU Lihong,et al.Lithologic characteristics and geological implication of finegrained sedimentation in Ek2 high stand system tract of Cangdong Sag,Huanghua Depression[J].China Petroleum Exploration,2015,20(5):30-40.
参考文献 3
韩文中,赵贤正,金凤鸣,等.渤海湾盆地沧东凹陷孔二段湖相页岩油甜点评价与勘探实践[J].石油勘探与开发,2021,48(4):777-786.HAN Wenzhong,ZHAO Xianzheng,JIN Fengming,et al.Sweet spots evaluation and exploration of lacustrine shale oil of the second member of Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay Basin[J].Petroleum Exploration and Development,2021,48(4):777-786.
参考文献 4
蒲秀刚,周立宏,韩文中,等.细粒相沉积地质特征与致密油勘探:以渤海湾盆地沧东凹陷孔店组二段为例[J].石油勘探与开发,2016,43(1):24-33.PU Xiugang,ZHOU Lihong,HAN Wenzhong,et al.Geologic features of fine-grained facies sedimentation and tight oil exploration:a case from the second Member of Paleogene Kongdian Formation of Cangdong sag,Bohai Bay Basin[J].Petroleum Exploration and Development,2016,43(1):24-33.
参考文献 5
ZHAO Xianzheng,PU Xiugang,ZHOU Lihong,et al.Typical geological characteristics and exploration practices of lacustrine shale oil:a case study of the Kong-2 member strata of the Cangdong Sag in the Bohai Bay Basin [J].Marine and Petroleum Geology,2020,113:103999.
参考文献 6
ROMERO-SARMIENTO M F,EUZEN T,ROHAIS S,et al.Artificial thermal maturation of source rocks at different thermal maturity levels:application to the Triassic Montney and Doig formations in the Western Canada sedimentary basin[J].Organic Geochemistry,2016,97:148-162.
参考文献 7
JARVIE D M.Shale resource systems for oil and gas:Part 2—shale-oil resource systems[M]//AAPG Memoir 97.Tulsa:AAPG,2012:89-119.
参考文献 8
HAN Y J,MAHLSTEDT N,HORSFIELD B.The Barnett Shale:compositional fractionation associated with intraformational petroleum migration,retention,and expulsion[J].AAPG Bulletin,2015,99(12):2173-2202.
参考文献 9
LI Maowen,CHEN Zhuoheng,MA Xiaoxiao,et al.Shale oil resource potential and oil mobility characteristics of the eocene-oligocene Shahejie Formation,Jiyang super-depression,Bohai Bay Basin of China[J].International Journal of Coal Geology,2019,204:130-143.
参考文献 10
YANG S Y,HORSFIELD B.Critical review of the uncertainty of Tmax in revealing the thermal maturity of organic matter in sedimentary rocks [J].International Journal of Coal Geology,2020,225:10350.
参考文献 11
SING K S.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity(Recommendations 1984)[J].Pure and Applied Chemistry,1985,57(4):603-619.
参考文献 12
LOUCKS R G,REED R M,RUPPEL S C,et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores [J].AAPG Bulletin,2012,96(6):1071-1098.
参考文献 13
郭旭升,马晓潇,黎茂稳,等.陆相页岩油富集机理探讨[J].石油与天然气地质,2023,44(6):1333-1349.GUO Xusheng,MA Xiaoxiao,LI Maowen,et al.Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins[J].Oil & Gas Geology,2023,44(6):1333-1349.
参考文献 14
胡宗全,王濡岳,路菁,等.陆相页岩及其夹层储集特征对比与差异演化模式[J].石油与天然气地质,2023,44(6):1393-1404.HU Zongquan,WANG Ruyue,LU Jing,et al.Storage characteristic comparison of pores between lacustrine shales and their interbeds and differential evolutionary patterns [J].Oil & Gas Geology,2023,44(6):1393-1404.
参考文献 15
鄢继华,蒲秀刚,周立宏,等.基于X射线衍射数据的细粒沉积岩岩石定名方法与应用[J].中国石油勘探,2015,20(1):48-54.YAN Jihua,PU Xiugang,ZHOU Lihong,et al.Naming method of fine-grained sedimentary rocks on basis of Xray diffraction data [J].China Petroleum Exploration,2015,20(1):48-54.
参考文献 16
赵贤正,周立宏,蒲秀刚,等.断陷湖盆湖相页岩油形成有利条件及富集特征:以渤海湾盆地沧东凹陷孔店组二段为例 [J].石油学报,2019,40(9):1013-1029.ZHAO Xianzheng,ZHOU Lihong,PU Xiugang,et al.Favorable formation conditions and enrichment characteristics of lacustrine facies shale oil in faulted lake basin:a case study of Member 2 of Kongdian Formation in Cangdong Sag,Bohai Bay Basin[J].Acta Petrolei Sinica,2019,40(9):1013-1029.
参考文献 17
吴光兴.东濮凹陷北部地区源岩排烃效率研究:以前参2井为例 [J].内蒙古石油化工,2002,28(4):233-235.WU Guangxing.Study on expulsion efficiency of hydrocarbon for sourse rock in north area of Dongpu Depression:taking example of former well Qiancan 2[J].Inner Mongolian Petrochemical Industry,2002,28(4):233-235.
参考文献 18
周杰,庞雄奇.一种生排烃量计算方法探讨与应用 [J].石油勘探与开发,2002,29(1):24-27.ZHOU Jie,PANG Xiongqi.A method for calculating the quantity of hydrocarbon generation and expulsion [J].Petroleum Exploration and Development,2002,29(1):24-27.
参考文献 19
张卫海,陈中红,查明,等.东营凹陷烃源岩排油机理 [J].石油学报,2006,27(5):46-50.ZHANG Weihai,CHEN Zhonghong,ZHA Ming,et al.Hydrocarbon expulsion mechanism for source rock in Dongying Depression[J].Acta Petrolei Sinica,2006,27(5):46-50.
参考文献 20
张晓宇,梁卫.油气初次运移的控制因素与排烃效率[J].江汉石油学院学报,1993,15(2):23-26.ZHANG Xiaoyu,LIANG Wei.On the factors controlling the primary migration and the expulsive efficiency[J].Journal of Jianghan Petroleum Institute,1993,15(2):23-26.
参考文献 21
SANDVIK E,YOUNG W,CURRY D.Expulsion from hydrocarbon sources:the role of organic absorption[J].Organic Geochemistry,1992,19(1/2/3):77-87.
参考文献 22
LEWAN M,WINTERS J,MCDONALD J.Generation of oil-like pyrolyzates from organic-rich shales[J].Science,1979,203(4383):897-899.
参考文献 23
HORSFIELD B,SCHENK H,MILLS N,et al.An investigation of the in-reservoir conversion of oil to gas:compositional and kinetic findings from closed-system programmed-temperature pyrolysis [J].Organic Geochemistry,1992,19(1/2/3):191-204.
参考文献 24
LEWAN M D,DPLAN M P,CURTIS J B.Effects of smectite on the oil-expulsion efficiency of the Kreyenhagen Shale,San Joaquin Basin,California,based on hydrous-pyrolysis experiments [J].AAPG Bulletin,2014,98(6):1091-1109.
参考文献 25
马卫,李剑,王东良,等.烃源岩排烃效率及其影响因素[J].天然气地球科学,2016,27(9):1742-1751.MA Wei,LI Jian,WANG Dongliang,et al.Hydrocarbon expulsion efficiency of source rocks and its influencing factors [J].Natural Gas Geoscience,2016,27(9):1742-1751.
参考文献 26
STOCKHAUSEN M.Experimental simulation of hydrocarbon expulsion[D].Kiel:Kiel University,2015.
参考文献 27
MACKENZIE A,LEYTHAEUSER D,SCHAEFER R,et al.Expulsion of petroleum hydrocarbons from shale source rocks[J].Nature,1983,301(5900):506-509.
参考文献 28
BURNHAM A K,BRAUN R L.Development of a detailed model of petroleum formation,destruction,and expulsion from lacustrine and marine source rocks[J].Organic Geochemistry,1990,16(1/2/3):27-39.
参考文献 29
张冬梅,张延延,郭隽菁,等.基于岩石热解参数图版的烃源岩内部排烃效率计算方法[J].石油实验地质,2021,43(3):532-539.ZHANG Dongmei,ZHANG Yanyan,GUO Junjing,et al.A calculation method for the efficiency of hydrocarbon expulsion based on parameter-diagram of source rock pyrolysis[J].Petroleum Geology & Experiment,2021,43(3):532-539.
参考文献 30
COOLES G,MACKENZIE A,QUIGLEY T.Calculation of petroleum masses generated and expelled from source rocks [J].Organic Geochemistry,1986,10(1):235-245.
参考文献 31
PEPPER A S,CORVI P J.Simple kinetic models of petroleum formation.Part Ⅲ:modelling an open system [J].Marine and Petroleum Geology,1995,12(4):417-452.
参考文献 32
ESEME E,KROOSS B,LITTKE R.Evolution of petrophysical properties of oil shales during high-temperature compaction tests:implications for petroleum expulsion [J].Marine and Petroleum Geology,2012,31(1):110-124.
参考文献 33
陈建平,孙永革,钟宁宁,等.地质条件下湖相烃源岩生排烃效率与模式[J].地质学报,2014,88(11):2005-2032.CHEN Jianping,SUN Yongge,ZHONG Ningning,et al.The efficiency and model of petroleum expulsion from the lacustrine source rocks within geological frame[J].Acta Geologica Sinica,2014,88(11):2005-2032.
参考文献 34
PETERS K E,BURNHAM A K,WALTERS C C.Petroleum generation kinetics:single versus multiple heating-ramp open-system pyrolysis [J].AAPG Bulletin,2015,99(4):591-616.
参考文献 35
侯宇光,何生,易积正,等.页岩孔隙结构对甲烷吸附能力的影响 [J].石油勘探与开发,2014,41(2):248-256.HOU Yuguang,HE Sheng,YI Jizheng,et al.Effect of pore structure on methane sorption capacity of shales [J].Petroleum Exploration and Development,2014,41(2):248-256.
参考文献 36
GIESCHE H.Mercury porosimetry:a general(practical)overview[J].Particle & Particle Systems Characterization,2006,23(1):9-19.
参考文献 37
李志明,刘雅慧,何晋译,等.陆相页岩油“甜点”段评价关键参数界限探讨[J].石油与天然气地质,2023,44(6):1453-1467.LI Zhiming,LIU Yahui,HE Jinyi,et al.Limits of critical parameters for sweet-spot interval evaluation of lacustrine shale oil [J].Oil & Gas Geology,2023,44(6):1453-1467.
参考文献 38
刘鹏,张磊,王胜奎,等.济阳坳陷古近系页岩油运移路径探讨及其石油地质意义[J].中国石油大学学报(自然科学版),2022,46(6):89-98.LIU Peng,ZHANG Lei,WANG Shengkui,et al.Discussion on migration path of Paleogene shale oil in Jiyang Depression and its petroleum geological significance [J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(6):89-98.
目录contents

    摘要

    渤海湾盆地沧东凹陷孔二段页岩油资源潜力巨大,且通过水平井钻控获得了稳产工业油流。应用常规热解和分步热解技术,优化生排烃物质平衡法,提出了基于原始生烃潜力和现今残余生烃潜力的页岩生烃和排烃效率氢指数平衡计算方法,并探索成熟度以外孔二段页岩排烃效率的主控因素及其与含油性的关系。选取深度和成熟度较为接近的样品,以排除成熟度这一公认的生排烃效率指标的影响。结果表明,页岩有机质丰度和类型、微观孔隙结构和岩石类型等是控制其生排烃效率的重要因素。 Ⅲ型干酪根产物以轻烃为主,排烃效率变化大且普遍高于Ⅰ型和Ⅱ型干酪根。 Ⅰ型和Ⅱ型干酪根在 TOC 超过 3%以后,排烃效率随 TOC 的增加而增大。墨水瓶型孔对液态烃的滞留能力强于狭缝型孔;对气态烃而言墨水瓶型孔反而是利于排烃的优势通道。纹层状页岩比薄层状页岩具有更低的排烃效率。生排烃共同控制着页岩的含油量,页岩中含油量与排烃效率整体呈负相关,但与生烃潜力、生烃效率和滞留烃率的乘积呈明显的正相关性,展示了生排烃效率计算方法的可靠性和实用性。

    Abstract

    The shale oil potential of the second member of Kongdian Formation in Cangdong Sag, Bohai Bay Basin, is substantial, with stable industrial oil flow achieved through horizontal well drilling and control. In this paper, the routine rock-eval pyrolysis and shale play rock-eval pyrolysis techniques are utilized to optimize the hydrocarbon generation and expulsion mass balance method. A hydrogen index balance calculation method for shale hydrocarbon generation and expulsion efficiency, based on both the original and residual hydrocarbon generation potential, is proposed. Investigating the primary controlling factors, aside from maturity, on hydrocarbon expulsion efficiency in the shale,sheds light on the relationship between hydrocarbon expulsion efficiency and oil bearing property. In this study, samples with similar depth and maturity are selected to exclude the influence of maturity variation, a recognized indicator of hydrocarbon generation and expulsion efficiency. The results show the significance of organic matter abundance and type, pore structures, and rock types as key factors controlling hydrocarbon generation and expulsion efficiency in the shale of the second member of the Paleogene Kongdian Formation in Cangdong Sag. The products of type Ⅲ kerogen are mainly light hydrocarbons, exhibiting considerable variation in hydrocarbon expulsion efficiency, generally higher than that of typeⅠand typeⅡkerogen. When the TOC content of typeⅠand typeⅡkerogen exceeds 3%, hydrocarbon expulsion efficiency increases with TOC. Ink-bottle pores exhibit stronger retention of liquid hydrocarbons compared to slit pores. But for gaseous hydrocarbons, ink-bottle pores are the dominant channel to expel hydrocarbon. Additionally, laminated shale demonstrates lower hydrocarbon expulsion efficiency than thin laminated shale. The total oil content in shale is the outcome of co-controlled generation and expulsion of hydrocarbons. It shows a negative correlation with hydrocarbon expulsion efficiency, but a significant positive correlation with the product of hydrocarbon generation potential, hydrocarbon generation efficiency, and hydrocarbon retention rate, affirming the reliability and practicality of the proposed calculation method of hydrocarbon expulsion efficiency.

  • 渤海湾盆地沧东凹陷古近系孔店组二段(简称 “孔二段”)为一套厚层富有机质页岩,初步计算资源量达 6.8×10 8 t [1],资源丰富,开发潜力巨大。目前孔二段页岩的“储集性、含油性、可动性及可压性”四性特征逐步明确[2],然而生排烃效率研究比较匮乏。笔者基于地质、地球化学及岩石物理分析测试资料,对孔二段页岩的基础地质特征进行刻画,定量计算生排烃效率并分析讨论其主控因素。

  • 1 地质背景

  • 沧东凹陷是渤海湾盆地中部的一个新生代陆相拉张碟状湖盆,北部与孔店凸起相接,夹持在西部沧县隆起和东部徐黑凸起之间(图1)。内部可划分为孔西斜坡、孔店构造带、孔东斜坡、舍女寺断鼻带和南皮斜坡 5 个次级构造单元,勘探面积约为 1 780 km 2 [3-4]。研究区现今构造格局的形成历经 3 个演化阶段:孔三段沉积期为坳陷盆地,无明显边界断层; 孔二段继承了孔三段沉积期的盆地原型,不断坳陷且断陷上翘; 孔一段沉积期构造强烈,沧东断层和徐黑断层活动逐渐加强,盆地呈现出明显的断坳构造。总体而言,孔二段沉积期构造活动以坳陷为主,持续有频繁但低幅度的构造活动[5],但盆地内部构造背景相对稳定,为后续湖盆沉积大套页岩提供了有利条件。

  • 孔二段是古近纪早期在稳定构造背景下沉积的一套以暗色页岩为主,夹杂中薄层粉砂岩、中细砂岩和泥质白云岩的厚度 400~600 m 且分布稳定的沉积建造。新生界地层有古近系孔店组(Ek)、沙河街组(Es)、东营组(Ed)地层和新近系馆陶组(Ng)、明化镇组(Nm)地层。从湖盆边缘到湖盆中心,依次发育三角洲平原、三角洲前缘、近岸水下扇、滨浅湖及半深湖—深湖亚相(图1),岩性也从砂岩、致密砂岩过渡至细粒沉积岩。

  • 图1 沧东凹陷现今构造与孔二段沉积相带(据文献[4]修改)

  • Fig.1 Present tectonic outline of Cangdong sag and sedimentary facies belt of the second member of Kongdian Formation in Cangdong Sag (After citation[4], modified)

  • 2 研究样品与试验方法

  • 2.1 样品

  • 为了利用生烃潜力平衡法计算生排烃效率,选取不同钻井深度和相应有机质成熟度的 3 口钻井样品进行研究(图1)。研究位于官西地区的 G108-8 井不同深度的 3 个样品,埋深在 2900~3200 m 之间,样品镜质体反射率 Ro 约为 0.65%,属低成熟样品。在位于官东地区的 GD12 及 GD14 两口井中分别取样 14 和 15 个,深度在 3 800~4 130 m,Ro 为 0.85%~1.15%,处于生油窗范围。

  • 2.2 实验方法

  • 针对溶剂抽提前后的样品,开展了一系列不同的分析测试。通过 Leco CS-744 硫碳分析仪测定了未抽提样品的总有机碳含量; 采用法国 Vinci Technologies 公司生产的 Rock-Eval7 型岩石热解仪开展了常规和分步岩石热解实验。其中分步岩石热解采用法国石油研究院提出的 Shale Play method TM 升温方案[6],即 Sh0 为 100~200℃ 收集的游离烃含量,Sh1 为 200~350℃ 页岩释放的吸附烃含量,Sh2 为 350~650℃ 干酪根产生的热裂解烃量。利用日本 Rigaku 公司生产的 SmartLab SE X 射线衍射仪开展了 XRD(X 射线衍射分析)矿物含量分析; 使用 DM4P 徕卡偏光显微镜观察矿物特征和沉积构造; 应用德国 Bruker 公司生产的 M4 Tornado X 射线荧光光谱仪(XRF)测量了样品的主要元素( Si、Ca、Al、K 及 Mn 等)浓度; 借助美国 Micromeritics 公司生产的 ASAP 2460 多站扩展式比表面积及孔径分析仪,应用多点 BET、BJH 理论,对页岩样品的比表面积、累积孔隙体积进行了量化; 基于 Helios NanoLab TM 600 氩离子抛光场发射扫描电镜高分辨率成像观察,提供了微观孔隙结构的直接证据。

  • 与此同时,经索氏抽提( 溶剂采用体积比为 93 ∶ 7 的二氯甲烷与甲醇混合液)10 d 后的粉末样品,再次进行岩石热解实验,用以计算不受重烃“迟滞效应”影响的生烃潜力和总含油量。考虑到页岩油样品的地质特征,页岩油含量评价采用 Jarvie [7] 提出的计算方法:

  • St=S1未抽提 -S1抽提后 +S2 未抽提 -S2 抽提后 .

  • 式中,St 为总含油量; S1S2 为常规岩石热解热挥发烃和热裂解烃的含量,目前该方法被广泛应用于国内外页岩油地质资源计算中[8-9]

  • 3 基础地质特征

  • 3.1 有机质特征

  • 本研究中 GD12 与 GD14 井样品的 TOC 为 0.50%~4.84%(图2),平均值为 2.28%,均属有效烃源岩(TOC 大于 0.5%)。在 S2(抽提后)与 TOC 交汇图中,多数样品氢指数 IH 介于 200~600 mg / g TOC 趋势线间,指示为Ⅱ型或Ⅱ/ Ⅲ干酪根,少数有机碳含量较低的样品展示出了Ⅲ型和Ⅳ型干酪根的特征(图2)。

  • 图2 经索氏抽提以后的样品 S2 与 TOC 关系

  • Fig.2 Relationship between S2 and TOC after Soxhlet extraction

  • 在常规岩石热解实验中,S1 为 300℃ 时热挥发烃的含量,S2 为 300~650℃ 之间热裂解烃的含量。在理想状态下,S1 反映了在地质演化过程中已经生成的油气含量,而 S2 则代表了干酪根的生烃潜量。然而,在含油率较高的页岩样品中,部分高分子量烃类化合物难以在 300℃ 情况下被充分挥发,进而滞留到 S2 的测试范围,产生“迟滞效应” [7]。本文中对比了孔二段页岩抽提前后的岩石热解参数(图3),结果揭示了抽提过程对页岩基础有机地球化学参数的重要影响。抽提前样品的氢指数平均值较高,整体在 300 mg / g TOC 以上,指示的干酪根类型以Ⅰ型和Ⅱ型为主; 最高峰对应温度(Tmax)较低,等效镜质体反射率在 0.5%~0.7%,且 G108-8 井与 GD12 和 GD14 井样品成熟度区分度不大( 图3(a))。与之相比,抽提后的样品氢指数明显降低,指示的干酪根类型以Ⅱ型和Ⅲ型为主; Tmax 大幅上升,G108-8 井等效镜质体反射率约为 0.6%,而 GD12 和 GD14 井样品的等效镜质体反射率在 0.7%~1. 0%(图3( b))。虽然岩石热解参数 Tmax 是一个能很好地反映有机质热成熟度的参数,但其值也受到其他因素的影响,比如样品富氢、富硫或富沥青质会造成 Tmax 偏低,黏土矿物的吸附作用则会造成 Tmax 异常偏高[10]。研究发现,洗油后样品的 Tmax 在经过换算以后,呈现的等效镜质体反射率值与前人直接测量的镜质体反射率数据较为吻合[5],即 G108-8 井孔二段页岩 Ro 约为 0.65%,GD12 和 GD14 井样品的 Ro 为 0.85%~1.15%。

  • 综上所述,由于孔二段页岩较好的含油性,导致未洗油样品的 S1 无法在常规岩石热解的加热条件下充分挥发并被检测。一定量的自由烃在 300~650℃区间内加热条件下才被释放,进而造成 S2 最高峰对应的温度(Tmax)偏低和氢指数偏高。因此,针对含油量较高的样品,在岩石热解实验之前开展索氏抽提“洗油”预处理非常有必要。

  • 图3 GD12 与 GD14 井孔二段页岩洗油前和洗油后岩石热解参数的有机质类型划分

  • Fig.3 Classification of organic matter types of rock-eval pyrolysis parameters before and after extraction of shale from well GD12 and GD14

  • 3.2 微观孔隙结构特征

  • 氮气等温吸附-脱附曲线可用于定性表征多孔介质中孔径介于 1.7~300 nm 的孔隙结构。图4 展示了含有不同类型干酪根的孔二段页岩的氮气吸附脱附曲线特征。含有Ⅰ型干酪根的页岩回滞环类型为 H3 型(图4( a)),反映了狭缝型孔隙,当相对压力介于 0.9~1 时,吸附量急剧增加,不存在吸附饱和现象,孔隙体积约为 5 cm 3 / g。图4( b)展示了含有Ⅱ型干酪根页岩的等温吸附-脱附曲线,回滞环类型为 H2 型,当相对压力达到 0.5 时,吸附量陡然增加,与标准 H2 型回滞环的区别是高压阶段不存在吸附平台,由墨水瓶孔与狭缝孔两类孔隙复合,孔隙体积平均为 8 cm 3 / g。含有Ⅲ型干酪根页岩的孔隙结构较为复杂(图4( c)),H2 与 H4 型回滞环都有分布,孔隙结构主要由墨水瓶孔和平行板状孔组成,个别样品在相对压力 0.5~0.9 范围内几乎维持在一个水平,与标准 H2 型回滞环类似,孔隙体积介于 5~15 cm 3 / g。

  • 根据 IUPAC 的分类,直径小于 2 nm 的孔隙称为微孔,介于 2~50 nm 的孔隙为介孔,大于 50 nm 的孔隙为大孔[11]。孔径分布曲线如图4(d)~( f),不同类型样品的孔径分布有所差别,但直径 2~50 nm 的介孔均是其孔隙的主要组成部分,同时含有一定的大孔。 Ⅰ型的孔隙体积较小,孔径分布为双峰型,直径 2~3 nm 与 10~12 nm 的孔隙贡献了大部分孔隙体积。 Ⅱ型为微弱的双峰型,直径 3~4 nm 的孔隙与直径 10 nm 的孔隙贡献的体积约为 10 ∶ 1。 Ⅲ型具有最大的孔隙体积,且直径小于 10 nm 的孔隙占比最大。

  • 氩离子抛光场发射扫描电镜能够提供页岩微观孔隙结构的直接证据[12-13]。含不同有机质类型的页岩扫描电镜照片如图5 所示,展示了典型Ⅰ、 Ⅱ、Ⅲ型有机质扫描电镜照片及发育的主要孔隙类型。 3 种类型有机质生烃孔显示出不同的孔隙特征(图5( a)~( c)),Ⅰ型有机质孔呈长条状、不规则状(图5( a)),Ⅲ型为典型的海绵状孔隙结构(图5( c)),Ⅱ型两种形状的有机孔皆有发育(图5( b))。除生烃孔外,有机质与无机矿物由于热传导差异形成的收缩缝也是有机孔的主要类型之一( 图5( e))。研究区还发育多种无机孔隙类型[14],主要包括粒间孔、微裂缝、晶间孔、粒内溶孔等。石英粒间孔(图5( d))孔隙形态多为椭圆状。微裂缝(图5( g))可能是源岩排烃的有利通道。钠长石粒内溶孔(图5( f))为不规则状。石膏、黏土矿物晶间孔(图5( h)、( i))孔隙形态多为长条状,平行板状。

  • 图4 孔二段页岩氮气吸附脱附曲线与孔径分布

  • Fig.4 Nitrogen adsorption-desorption isotherms and pore size distribution of shale in the second member of Kongdian Formation

  • 图5 沧东凹陷孔二段页岩储集空间类型

  • Fig.5 Pore types of shale in the second member of Kongdian Formation in Cangdong Sag

  • 3.3 岩石类型特征

  • XRD 数据表明沧东凹陷孔二段页岩矿物成分多样,以石英、长石、方解石、白云石、黏土矿物为主,同时含有方沸石、黄铁矿、菱铁矿等。本文中岩性划分应用细粒沉积岩定名方法[15],将长英质矿物(长石和石英)、碳酸盐矿物(方解石和白云石)及黏土矿物作为三端元矿物,对 G108-8、GD12 及 GD14 三口井孔二段页岩样品进行了基本定名。从矿物成分三角图可看出,沧东凹陷孔二段主要发育长英质页岩、混积质页岩及灰云质页岩,而黏土质页岩基本不发育(图6)。

  • 不同矿物的化学成分有较大差异,因此可通过二维 XRF 元素扫描图像区分硅质与钙质纹层。其不足之处是无法精确鉴别矿物,例如沧东凹陷含硅元素的矿物包括石英、长石、黏土及方沸石等,含有钙的矿物包括方解石和白云石等。虽然 XRF 的多解性难以准确识别不同矿物类型,但通过元素在空间上的分布关系可以反映页岩的非均质性和层理结构。结合镜下薄片鉴定与 XRF 两种互补性方法,可以更细致地刻画孔二段页岩沉积构造。在 XRF 图像中,纹层平直且边界清晰,长英质页岩、混积质页岩和含灰白云质页岩的硅钙含量比递减(图7( c)、(f)、(i))。依据不同矿物的光性差异,通过单偏光和正交偏光对比分析,纹层可细分为长英质纹层(图7(b))、方沸石纹层(图7(e))、灰云质纹层(图7(e))及黏土质纹层(图7(e)),薄层状含灰白云质页岩发育灰云质纹层,镜下特征明显(图7( h))。参考中国石油大港油田分公司对沧东凹陷孔二段优势组构相的划分方案[16],在薄片尺度下,孔二段页岩沉积构造类型以纹层状(纹层厚度 δ<1 mm)和薄层状(纹层厚度 δ≥1 mm)构造为主。

  • 图6 孔二段页岩矿物成分三角图

  • Fig.6 Triangle diagram of shale mineral composition in the second member of Kongdian Formation

  • 图7 沧东凹陷孔二段页岩沉积构造类型

  • Fig.7 Sedimentary structure of shale in the second member of Kongdian Formation in Cangdong Sag

  • 4 生排烃效率

  • 4.1 生排烃效率计算方法

  • 目前已有多位学者提出计算生排烃效率的方法,包括残留烃量法[17-19]、孔隙度法[20]、含烃饱和度法[21]、生排烃热模拟实验法[22-28]、图版法[29] 和质量平衡法[30]。每种方法侧重点不同,各有优缺点。例如,残留烃量法总结了生排烃量与有机碳含量的经验公式,但受陆相湖盆非均质性影响,应用于其他盆地则具有不确定性; 含烃饱和度法基于烃-水成固定比例排出的粗放设定,无法满足精细勘探开发的需求; 生排烃热模拟实验,虽然考虑了有机质演化过程中温度、压力、含水量等影响因素,但实验设定与真实的地层情况仍有较大差别,且多数情况下只能针对个别样品进行分析。

  • 将烃源岩生排烃机制与质量平衡原理相结合的基于岩石热解参数的质量平衡法,是一种计算生排烃效率的经典方法[30]。该方法使用 S o1So2Sm 1S m 2(上标 o 代表原始,m 代表成熟)4 个参数计算生排烃效率。然而,因为该方法应用生烃潜量对有机质进行分类,导致生排烃效率过分依赖于有机碳含量。而本研究改进的物质平衡法,即将生烃量(S1)和生烃潜量(S2)用 TOC 进行校正,然后再利用平衡法计算生排烃效率。

  • 排烃是在生烃的基础上进行的,因而生排烃效率的计算往往是同时进行的。生烃、排烃效率的定义不同,相对应计算生烃、排烃效率的方法也不同[30-33],本文使用的排烃效率计算方法基于累积排烃效率的计算原理,且能表征烃源岩某一演化阶段时的排烃量相对整个演化路径总生烃量的程度。烃源岩生烃效率指烃源岩生成烃类的程度,即

  • 生烃效率=已生成烃/ 原始残余生烃潜力 =(原始残余生烃潜力-现今残余生烃潜力)/ 原始残余生烃潜力。

  • 烃源岩排烃效率指烃源岩排出烃类的程度,即排烃效率=排出烃量/ 原始生烃潜力 =(原始生烃潜力-现今生烃潜力)/ 原始生烃潜力。

  • 计算页岩生烃、排烃效率的基本地球化学参数有 4 个:氢指数(IH )、热挥发烃量( S1)、热裂解烃量(S2)及总有机碳含量(TOC),获得上述 4 个关键参数,可确定原始生烃潜力(即未成熟样品单位质量有机碳对应的生烃潜量)、现今生烃潜力(即待计算样品单位质量有机碳对应的生烃潜量)、原始残余生烃潜力(即未成熟样品单位质量有机碳对应的残余生烃潜量)、现今残余生烃潜力(即待计算样品单位质量有机碳对应的残余生烃潜量),而岩石的原始生烃潜力及原始残余剩余生烃潜力,则可以通过选取低成熟样品进行岩石热解分析后获得(图8),具体计算方法如下:

  • Eg=S2ex0w(TOC)-S2exmw(TOC)m/S2ex0w(TOC),
    (1)
  • Ee=S1o+S2ow(TOC)-S1m+S2mw(TOC)m/S1o+S2ow(TOC).
    (2)
  • 式中,Eg 为生烃效率; Ee 为排烃效率; S o 2ex 为未成熟样品经抽提后的热裂解烃量; w(TOC) o 为未成熟样品的总有机碳含量; S m 2ex 为成熟样品经抽提后的热裂解烃量; w(TOC) m 为成熟样品的总有机碳含量; S o 1 为未成熟样品的热挥发烃量; S m 1 为成熟样品的热挥发烃量; S o 2 为未成熟样品的热裂解烃量; S m 2 为成熟样品的热裂解烃量。

  • 图8 孔二段页岩样品有机质类型划分方案

  • Fig.8 Classification scheme of organic matter types of shale in the second member of Kongdian Formation

  • 4.2 孔二段页岩生排烃效率

  • 基于生烃潜力平衡法的计算,GD12 与 GD14 井样品的生烃和排烃效率在不同深度的样品上呈现出不同特征(图9)。在 3 820~3 960 m 深度段生烃效率变化区间较大( 3%~92%),多数样品集中在 20%~50%(图9(a)); 在 4060~4140 m 深度段生烃效率整体介于 25%~60%,生烃效率呈现出小幅增大趋势。虽然 GD12 和 GD14 井样品深度最大相差约 200 m,但所有样品成熟度相关不大,因而生烃效率与深度的相关性也不明显。

  • 图9 孔二段 GD12 与 GD14 井页岩样品生烃效率与排烃效率分布

  • Fig.9 Distribution of hydrocarbon generation efficiency and hydrocarbon expulsion efficiency of shale samples from well GD12 and GD14 in the second member of Kongdian Formation

  • 在排烃效率方面,两个深度段的排烃效率变化都较大,最小的排烃效率约 3%,最高则接近 100%,多数样品的排烃效率集中在 20%~50%(图9(b))。同样,排烃效率与深度的相关性不明显,证明本研究中控制孔二段生排烃效率的主要因素并不是有机质的热演化程度。

  • 5 生排烃效率的影响因素

  • 页岩的生烃和排烃过程,是有机质在地质温压场下缓慢转化为油气并从烃源岩中排出的过程,其效率受到烃源岩有机质与无机质等多种因素的影响。

  • 5.1 有机碳含量和干酪根类型

  • 孔二段页岩的生烃效率与有机质含量关系较为复杂,特别是不同类型的干酪根呈现出不同的相关性。在Ⅲ型干酪根样品中,页岩的生烃效率变化较大,且总体上与有机碳含量有负相关的关系(图10(a))。这可能与Ⅲ型干酪根的生烃动力学特征有关。 Ⅲ干酪根生烃活化能分布较广[34],即开始生烃和结束生烃的成熟度范围较大,加之Ⅲ型干酪根非均质性较强,造成了在特定的成熟度条件下样品的生烃效率相差非常之大。相比之下,Ⅰ型和Ⅱ型干酪根的非均质性稍弱,生烃效率相对稳定,且随着有机碳含量的增大有降低的趋势(图10( a))。这代表烃源岩在一定成熟度条件下具有特定的生烃高峰,有机碳含量过高的样品继续生烃的能力会受到已生成油气的抑制作用。

  • 页岩的排烃效率与有机碳含量的相关性更为明显(图10( b))。 Ⅲ干酪根的排烃效率普遍高于Ⅰ 型和Ⅱ型干酪根样品,这与Ⅲ型干酪根的产物类型关系密切。腐殖型干酪根的产物中气态烃比例较高,这造成了生成的油气具有更强的可动性,也更容易从烃源岩中排出。 Ⅰ型和Ⅱ型干酪根样品有机碳含量在 2%~3%时具有较低的排烃效率; 在 TOC 大于 3%以后,排烃效率随有机碳含量的增大而升高。这可能反映了页岩在有机碳含量约为 3%时,生成的油气量达到了页岩储存能力的上限。随着有机碳含量的进一步升高,页岩在满足自身储存的基础上开始向源外排烃,这也造成了滞留烃含量的相对降低和排烃效率的升高。

  • 图10 孔二段不同类型干酪根生排烃效率与 TOC 关系

  • Fig.10 Different types of kerogens in the second member of Kongdian Formation relationship between hydrocarbon generation, expulsion efficiency and TOC

  • 5.2 微观孔隙结构

  • 有机质是页岩孔隙的主要载体[35],相同成熟度条件下,有机质丰度与类型是页岩生烃的决定性因素。与此同时,有机质与孔隙结构共同影响着页岩的排烃效率,本研究综合有机质、孔隙形态及孔隙体积等多种因素探讨了孔隙结构对页岩排烃效率的影响。

  • 含有相同干酪根类型的页岩排烃效率相差不大,但Ⅰ型比Ⅱ型干酪根的排烃效率高(图11(a)、(b))。虽然Ⅰ、Ⅱ型同为倾油型干酪根,但墨水瓶型孔滞留液态烃的能力比狭缝型孔强[36],导致含有 Ⅱ型干酪根页岩的排烃效率低于Ⅰ型。由于气体分子量小且易扩散的物理性质,使其排烃需要的孔径下限较低,墨水瓶型孔较狭缝型孔更具有排烃优势。含有Ⅲ型干酪根主要产物为轻烃的页岩印证了这一点:具有墨水瓶孔样品的排烃效率整体大于具有狭缝孔样品的排烃效率(图11( c))。具有较高排烃效率的样品具有更大的孔隙体积,这可能是由于气体生成导致有机孔的生成,提供了可观的孔隙体积。孔隙形态的分类见图4。

  • 5.3 岩石类型

  • 孔二段页岩以纹层状长英质页岩、纹层状混积质页岩及薄层状含灰白云质页岩 3 种岩石类型为主。少数纹层状长英质页岩和纹层状混积质页岩的生烃效率超过 60%(图12( a)),这些样品都具较低有机碳含量的特点(图10( a))。在优质烃源岩中,生烃效率普遍低于 60%,其中纹层状长英质页岩的平均生烃效率最高( 图12( a))。在排烃效率方面,多数样品的排烃效率分布在 20%~40%,且以纹层状长英质页岩及纹层状混积质页岩为主[37](图12( b))。薄层状含灰白云质页岩的排烃效率明显高于其他岩石类型,这与其岩性和沉积构造有一定关系( 图12( b))。纹层状页岩平均排烃效率低于薄层状页岩,这可能是因为纹层页岩由于具备较强的非均质性,导致生成的油气优先在层系内发生极短距离运移[38],并储存在纹层等岩性变化较大的空间内,进而造成从纹层层系这一层面来看总体排烃效率不高的现象。

  • 图11 孔二段页岩排烃效率与累积孔隙体积、孔隙形状关系

  • Fig.11 Relationship between hydrocarbon expulsion efficiency and cumulative pore volume and pore shape of shale in the second member of Kongdian Formation

  • 图12 孔二段页岩生烃效率和排烃效率

  • Fig.12 Hydrocarbon generation and expulsion efficiency of shale in the second member of Kongdian Formation

  • 6 生排烃效率与含油性

  • 页岩含油性是生烃和排烃的耦合结果,在生烃强度一定的情况下,排烃效率直接影响了残留在烃源岩内的油气含量。在一个密闭的含油气系统中,排烃效率还决定了常规和非常规油气资源的分配比例,即排烃效率越高,常规油气资源量相对较大,反之亦然。

  • 刻画页岩含油性的方法有很多,其中包括现场解析、岩石热解 S1、氯仿沥青“A”等方法。针对页岩油的地质特点,Jarvie [7]提出了通过对比抽提前后热解参数的含油量( St)计算方法,即 St = S1未抽提-S1抽提后 +S2未抽提-S2抽提后,并成为评价页岩样品残余油含量的重要方法。通过页岩含油性与排烃效率的对比可知排烃效率越高,页岩含油性越差; 而页岩含油量大于 10 mg / g 的样品排烃效率普遍低于 30%(图13)。与此同时,分步热解参数 Sh0 / Sh1 是反映页岩残留烃可动性的重要指标。虽然页岩排烃效率和含油量不受页岩油可动性严格控制,但 Sh0 / Sh1 低于 0.4 的样品普遍具有排烃效率低于 30%且含油量高于 7 mg / g 的特点,说明页岩油的流动性也直接影响了排烃效率和含油性。

  • 预测页岩残余烃含量需 3 个关键参数:原始生烃潜力、生烃效率及滞留烃效率,三者的乘积为现今残余烃含量。计算公式为

  • Cp=S2m1-EgEg1-Ee.
    (3)
  • 式中,Cp 为预测残余烃含量; S m 2 为成熟样品的生烃潜力。

  • 图13 含油量与排烃效率关系

  • Fig.13 Relationship between total oil and hydrocarbon expulsion efficiency

  • 数据显示不同类型干酪根样品的实测含油量,与计算获得的残余烃含量具有非常好的相关性(图14),特别是Ⅰ型和Ⅱ型干酪根样品的相关性系数高达 0.78~0.81。含有Ⅲ型干酪根的页岩样品的实测含油量比计算值要高很多,这有可能是由于该类岩石无机孔隙相对发育,并且接收了烃源岩层系内短距离运移来的油气而造成。总之,图14 不仅通过实测含油数据验证了提出的生烃和排烃效率指标的可靠性,也充分展示了排烃效率的实践应用价值,即预测和评价页岩油含量的能力。

  • 图14 实验测定的页岩含油量与计算获得的滞留烃含量相关性

  • Fig.14 Correlation between total oil of shale measured experimentally and residual hydrocarbon content obtained by calculation method

  • 7 结论

  • (1)本研究改进了传统物质平衡法计算生排烃效率的流程,利用氢指数平衡法分别对不同类型干酪根的排烃效率进行了计算。排烃效率变化范围非常大,分布在 5%~98%之间。

  • (2)干酪根类型和有机碳含量影响孔二段页岩的生排烃效率,含有Ⅲ型干酪根的样品相较于含有 Ⅰ型和Ⅱ型的页岩具有更高的排烃效率,而含有Ⅰ 型和Ⅱ型干酪根的样品在 TOC 超过 3%以后,排烃效率随 TOC 增大而增大。

  • (3)墨水瓶型孔对液态烃的滞留能力强于狭缝型孔,对气态烃而言,排烃需要的孔径下限较低,墨水瓶型孔反而是利于排烃的优势通道。

  • (4)纹层状页岩的排烃效率明显比薄层状页岩的排烃效率低,这反映了频繁的互层发育会造成排烃效率减低,进而导致油气滞留在烃源岩中。

  • (5)页岩中总含油量与排烃效率整体成负相关性,且与生烃潜力、生烃效率和滞留烃率的乘积成明显的正相关性。提出的计算方法得到了实测含油量数据的有力验证,展现出了较好的应用潜力。

  • 参考文献

    • [1] 赵贤正,周立宏,赵敏,等.陆相页岩油工业化开发突破与实践:以渤海湾盆地沧东凹陷孔二段为例[J].中国石油勘探,2019,24(5):589-600.ZHAO Xianzheng,ZHOU Lihong,ZHAO Min,et al.Breakthrough and practice of industrial development on continental shale oil:a case study on Kong-2 Member in Cangdong Sag,Bohai Bay Basin [J].China Petroleum Exploration,2019,24(5):589-600.

    • [2] 蒲秀刚,韩文中,周立宏,等.黄骅坳陷沧东凹陷孔二段高位体系域细粒相区岩性特征及地质意义[J].中国石油勘探,2015,20(5):30-40.PU Xiugang,HAN Wenzhong,ZHOU Lihong,et al.Lithologic characteristics and geological implication of finegrained sedimentation in Ek2 high stand system tract of Cangdong Sag,Huanghua Depression[J].China Petroleum Exploration,2015,20(5):30-40.

    • [3] 韩文中,赵贤正,金凤鸣,等.渤海湾盆地沧东凹陷孔二段湖相页岩油甜点评价与勘探实践[J].石油勘探与开发,2021,48(4):777-786.HAN Wenzhong,ZHAO Xianzheng,JIN Fengming,et al.Sweet spots evaluation and exploration of lacustrine shale oil of the second member of Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay Basin[J].Petroleum Exploration and Development,2021,48(4):777-786.

    • [4] 蒲秀刚,周立宏,韩文中,等.细粒相沉积地质特征与致密油勘探:以渤海湾盆地沧东凹陷孔店组二段为例[J].石油勘探与开发,2016,43(1):24-33.PU Xiugang,ZHOU Lihong,HAN Wenzhong,et al.Geologic features of fine-grained facies sedimentation and tight oil exploration:a case from the second Member of Paleogene Kongdian Formation of Cangdong sag,Bohai Bay Basin[J].Petroleum Exploration and Development,2016,43(1):24-33.

    • [5] ZHAO Xianzheng,PU Xiugang,ZHOU Lihong,et al.Typical geological characteristics and exploration practices of lacustrine shale oil:a case study of the Kong-2 member strata of the Cangdong Sag in the Bohai Bay Basin [J].Marine and Petroleum Geology,2020,113:103999.

    • [6] ROMERO-SARMIENTO M F,EUZEN T,ROHAIS S,et al.Artificial thermal maturation of source rocks at different thermal maturity levels:application to the Triassic Montney and Doig formations in the Western Canada sedimentary basin[J].Organic Geochemistry,2016,97:148-162.

    • [7] JARVIE D M.Shale resource systems for oil and gas:Part 2—shale-oil resource systems[M]//AAPG Memoir 97.Tulsa:AAPG,2012:89-119.

    • [8] HAN Y J,MAHLSTEDT N,HORSFIELD B.The Barnett Shale:compositional fractionation associated with intraformational petroleum migration,retention,and expulsion[J].AAPG Bulletin,2015,99(12):2173-2202.

    • [9] LI Maowen,CHEN Zhuoheng,MA Xiaoxiao,et al.Shale oil resource potential and oil mobility characteristics of the eocene-oligocene Shahejie Formation,Jiyang super-depression,Bohai Bay Basin of China[J].International Journal of Coal Geology,2019,204:130-143.

    • [10] YANG S Y,HORSFIELD B.Critical review of the uncertainty of Tmax in revealing the thermal maturity of organic matter in sedimentary rocks [J].International Journal of Coal Geology,2020,225:10350.

    • [11] SING K S.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity(Recommendations 1984)[J].Pure and Applied Chemistry,1985,57(4):603-619.

    • [12] LOUCKS R G,REED R M,RUPPEL S C,et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores [J].AAPG Bulletin,2012,96(6):1071-1098.

    • [13] 郭旭升,马晓潇,黎茂稳,等.陆相页岩油富集机理探讨[J].石油与天然气地质,2023,44(6):1333-1349.GUO Xusheng,MA Xiaoxiao,LI Maowen,et al.Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins[J].Oil & Gas Geology,2023,44(6):1333-1349.

    • [14] 胡宗全,王濡岳,路菁,等.陆相页岩及其夹层储集特征对比与差异演化模式[J].石油与天然气地质,2023,44(6):1393-1404.HU Zongquan,WANG Ruyue,LU Jing,et al.Storage characteristic comparison of pores between lacustrine shales and their interbeds and differential evolutionary patterns [J].Oil & Gas Geology,2023,44(6):1393-1404.

    • [15] 鄢继华,蒲秀刚,周立宏,等.基于X射线衍射数据的细粒沉积岩岩石定名方法与应用[J].中国石油勘探,2015,20(1):48-54.YAN Jihua,PU Xiugang,ZHOU Lihong,et al.Naming method of fine-grained sedimentary rocks on basis of Xray diffraction data [J].China Petroleum Exploration,2015,20(1):48-54.

    • [16] 赵贤正,周立宏,蒲秀刚,等.断陷湖盆湖相页岩油形成有利条件及富集特征:以渤海湾盆地沧东凹陷孔店组二段为例 [J].石油学报,2019,40(9):1013-1029.ZHAO Xianzheng,ZHOU Lihong,PU Xiugang,et al.Favorable formation conditions and enrichment characteristics of lacustrine facies shale oil in faulted lake basin:a case study of Member 2 of Kongdian Formation in Cangdong Sag,Bohai Bay Basin[J].Acta Petrolei Sinica,2019,40(9):1013-1029.

    • [17] 吴光兴.东濮凹陷北部地区源岩排烃效率研究:以前参2井为例 [J].内蒙古石油化工,2002,28(4):233-235.WU Guangxing.Study on expulsion efficiency of hydrocarbon for sourse rock in north area of Dongpu Depression:taking example of former well Qiancan 2[J].Inner Mongolian Petrochemical Industry,2002,28(4):233-235.

    • [18] 周杰,庞雄奇.一种生排烃量计算方法探讨与应用 [J].石油勘探与开发,2002,29(1):24-27.ZHOU Jie,PANG Xiongqi.A method for calculating the quantity of hydrocarbon generation and expulsion [J].Petroleum Exploration and Development,2002,29(1):24-27.

    • [19] 张卫海,陈中红,查明,等.东营凹陷烃源岩排油机理 [J].石油学报,2006,27(5):46-50.ZHANG Weihai,CHEN Zhonghong,ZHA Ming,et al.Hydrocarbon expulsion mechanism for source rock in Dongying Depression[J].Acta Petrolei Sinica,2006,27(5):46-50.

    • [20] 张晓宇,梁卫.油气初次运移的控制因素与排烃效率[J].江汉石油学院学报,1993,15(2):23-26.ZHANG Xiaoyu,LIANG Wei.On the factors controlling the primary migration and the expulsive efficiency[J].Journal of Jianghan Petroleum Institute,1993,15(2):23-26.

    • [21] SANDVIK E,YOUNG W,CURRY D.Expulsion from hydrocarbon sources:the role of organic absorption[J].Organic Geochemistry,1992,19(1/2/3):77-87.

    • [22] LEWAN M,WINTERS J,MCDONALD J.Generation of oil-like pyrolyzates from organic-rich shales[J].Science,1979,203(4383):897-899.

    • [23] HORSFIELD B,SCHENK H,MILLS N,et al.An investigation of the in-reservoir conversion of oil to gas:compositional and kinetic findings from closed-system programmed-temperature pyrolysis [J].Organic Geochemistry,1992,19(1/2/3):191-204.

    • [24] LEWAN M D,DPLAN M P,CURTIS J B.Effects of smectite on the oil-expulsion efficiency of the Kreyenhagen Shale,San Joaquin Basin,California,based on hydrous-pyrolysis experiments [J].AAPG Bulletin,2014,98(6):1091-1109.

    • [25] 马卫,李剑,王东良,等.烃源岩排烃效率及其影响因素[J].天然气地球科学,2016,27(9):1742-1751.MA Wei,LI Jian,WANG Dongliang,et al.Hydrocarbon expulsion efficiency of source rocks and its influencing factors [J].Natural Gas Geoscience,2016,27(9):1742-1751.

    • [26] STOCKHAUSEN M.Experimental simulation of hydrocarbon expulsion[D].Kiel:Kiel University,2015.

    • [27] MACKENZIE A,LEYTHAEUSER D,SCHAEFER R,et al.Expulsion of petroleum hydrocarbons from shale source rocks[J].Nature,1983,301(5900):506-509.

    • [28] BURNHAM A K,BRAUN R L.Development of a detailed model of petroleum formation,destruction,and expulsion from lacustrine and marine source rocks[J].Organic Geochemistry,1990,16(1/2/3):27-39.

    • [29] 张冬梅,张延延,郭隽菁,等.基于岩石热解参数图版的烃源岩内部排烃效率计算方法[J].石油实验地质,2021,43(3):532-539.ZHANG Dongmei,ZHANG Yanyan,GUO Junjing,et al.A calculation method for the efficiency of hydrocarbon expulsion based on parameter-diagram of source rock pyrolysis[J].Petroleum Geology & Experiment,2021,43(3):532-539.

    • [30] COOLES G,MACKENZIE A,QUIGLEY T.Calculation of petroleum masses generated and expelled from source rocks [J].Organic Geochemistry,1986,10(1):235-245.

    • [31] PEPPER A S,CORVI P J.Simple kinetic models of petroleum formation.Part Ⅲ:modelling an open system [J].Marine and Petroleum Geology,1995,12(4):417-452.

    • [32] ESEME E,KROOSS B,LITTKE R.Evolution of petrophysical properties of oil shales during high-temperature compaction tests:implications for petroleum expulsion [J].Marine and Petroleum Geology,2012,31(1):110-124.

    • [33] 陈建平,孙永革,钟宁宁,等.地质条件下湖相烃源岩生排烃效率与模式[J].地质学报,2014,88(11):2005-2032.CHEN Jianping,SUN Yongge,ZHONG Ningning,et al.The efficiency and model of petroleum expulsion from the lacustrine source rocks within geological frame[J].Acta Geologica Sinica,2014,88(11):2005-2032.

    • [34] PETERS K E,BURNHAM A K,WALTERS C C.Petroleum generation kinetics:single versus multiple heating-ramp open-system pyrolysis [J].AAPG Bulletin,2015,99(4):591-616.

    • [35] 侯宇光,何生,易积正,等.页岩孔隙结构对甲烷吸附能力的影响 [J].石油勘探与开发,2014,41(2):248-256.HOU Yuguang,HE Sheng,YI Jizheng,et al.Effect of pore structure on methane sorption capacity of shales [J].Petroleum Exploration and Development,2014,41(2):248-256.

    • [36] GIESCHE H.Mercury porosimetry:a general(practical)overview[J].Particle & Particle Systems Characterization,2006,23(1):9-19.

    • [37] 李志明,刘雅慧,何晋译,等.陆相页岩油“甜点”段评价关键参数界限探讨[J].石油与天然气地质,2023,44(6):1453-1467.LI Zhiming,LIU Yahui,HE Jinyi,et al.Limits of critical parameters for sweet-spot interval evaluation of lacustrine shale oil [J].Oil & Gas Geology,2023,44(6):1453-1467.

    • [38] 刘鹏,张磊,王胜奎,等.济阳坳陷古近系页岩油运移路径探讨及其石油地质意义[J].中国石油大学学报(自然科学版),2022,46(6):89-98.LIU Peng,ZHANG Lei,WANG Shengkui,et al.Discussion on migration path of Paleogene shale oil in Jiyang Depression and its petroleum geological significance [J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(6):89-98.

  • 参考文献

    • [1] 赵贤正,周立宏,赵敏,等.陆相页岩油工业化开发突破与实践:以渤海湾盆地沧东凹陷孔二段为例[J].中国石油勘探,2019,24(5):589-600.ZHAO Xianzheng,ZHOU Lihong,ZHAO Min,et al.Breakthrough and practice of industrial development on continental shale oil:a case study on Kong-2 Member in Cangdong Sag,Bohai Bay Basin [J].China Petroleum Exploration,2019,24(5):589-600.

    • [2] 蒲秀刚,韩文中,周立宏,等.黄骅坳陷沧东凹陷孔二段高位体系域细粒相区岩性特征及地质意义[J].中国石油勘探,2015,20(5):30-40.PU Xiugang,HAN Wenzhong,ZHOU Lihong,et al.Lithologic characteristics and geological implication of finegrained sedimentation in Ek2 high stand system tract of Cangdong Sag,Huanghua Depression[J].China Petroleum Exploration,2015,20(5):30-40.

    • [3] 韩文中,赵贤正,金凤鸣,等.渤海湾盆地沧东凹陷孔二段湖相页岩油甜点评价与勘探实践[J].石油勘探与开发,2021,48(4):777-786.HAN Wenzhong,ZHAO Xianzheng,JIN Fengming,et al.Sweet spots evaluation and exploration of lacustrine shale oil of the second member of Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay Basin[J].Petroleum Exploration and Development,2021,48(4):777-786.

    • [4] 蒲秀刚,周立宏,韩文中,等.细粒相沉积地质特征与致密油勘探:以渤海湾盆地沧东凹陷孔店组二段为例[J].石油勘探与开发,2016,43(1):24-33.PU Xiugang,ZHOU Lihong,HAN Wenzhong,et al.Geologic features of fine-grained facies sedimentation and tight oil exploration:a case from the second Member of Paleogene Kongdian Formation of Cangdong sag,Bohai Bay Basin[J].Petroleum Exploration and Development,2016,43(1):24-33.

    • [5] ZHAO Xianzheng,PU Xiugang,ZHOU Lihong,et al.Typical geological characteristics and exploration practices of lacustrine shale oil:a case study of the Kong-2 member strata of the Cangdong Sag in the Bohai Bay Basin [J].Marine and Petroleum Geology,2020,113:103999.

    • [6] ROMERO-SARMIENTO M F,EUZEN T,ROHAIS S,et al.Artificial thermal maturation of source rocks at different thermal maturity levels:application to the Triassic Montney and Doig formations in the Western Canada sedimentary basin[J].Organic Geochemistry,2016,97:148-162.

    • [7] JARVIE D M.Shale resource systems for oil and gas:Part 2—shale-oil resource systems[M]//AAPG Memoir 97.Tulsa:AAPG,2012:89-119.

    • [8] HAN Y J,MAHLSTEDT N,HORSFIELD B.The Barnett Shale:compositional fractionation associated with intraformational petroleum migration,retention,and expulsion[J].AAPG Bulletin,2015,99(12):2173-2202.

    • [9] LI Maowen,CHEN Zhuoheng,MA Xiaoxiao,et al.Shale oil resource potential and oil mobility characteristics of the eocene-oligocene Shahejie Formation,Jiyang super-depression,Bohai Bay Basin of China[J].International Journal of Coal Geology,2019,204:130-143.

    • [10] YANG S Y,HORSFIELD B.Critical review of the uncertainty of Tmax in revealing the thermal maturity of organic matter in sedimentary rocks [J].International Journal of Coal Geology,2020,225:10350.

    • [11] SING K S.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity(Recommendations 1984)[J].Pure and Applied Chemistry,1985,57(4):603-619.

    • [12] LOUCKS R G,REED R M,RUPPEL S C,et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores [J].AAPG Bulletin,2012,96(6):1071-1098.

    • [13] 郭旭升,马晓潇,黎茂稳,等.陆相页岩油富集机理探讨[J].石油与天然气地质,2023,44(6):1333-1349.GUO Xusheng,MA Xiaoxiao,LI Maowen,et al.Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins[J].Oil & Gas Geology,2023,44(6):1333-1349.

    • [14] 胡宗全,王濡岳,路菁,等.陆相页岩及其夹层储集特征对比与差异演化模式[J].石油与天然气地质,2023,44(6):1393-1404.HU Zongquan,WANG Ruyue,LU Jing,et al.Storage characteristic comparison of pores between lacustrine shales and their interbeds and differential evolutionary patterns [J].Oil & Gas Geology,2023,44(6):1393-1404.

    • [15] 鄢继华,蒲秀刚,周立宏,等.基于X射线衍射数据的细粒沉积岩岩石定名方法与应用[J].中国石油勘探,2015,20(1):48-54.YAN Jihua,PU Xiugang,ZHOU Lihong,et al.Naming method of fine-grained sedimentary rocks on basis of Xray diffraction data [J].China Petroleum Exploration,2015,20(1):48-54.

    • [16] 赵贤正,周立宏,蒲秀刚,等.断陷湖盆湖相页岩油形成有利条件及富集特征:以渤海湾盆地沧东凹陷孔店组二段为例 [J].石油学报,2019,40(9):1013-1029.ZHAO Xianzheng,ZHOU Lihong,PU Xiugang,et al.Favorable formation conditions and enrichment characteristics of lacustrine facies shale oil in faulted lake basin:a case study of Member 2 of Kongdian Formation in Cangdong Sag,Bohai Bay Basin[J].Acta Petrolei Sinica,2019,40(9):1013-1029.

    • [17] 吴光兴.东濮凹陷北部地区源岩排烃效率研究:以前参2井为例 [J].内蒙古石油化工,2002,28(4):233-235.WU Guangxing.Study on expulsion efficiency of hydrocarbon for sourse rock in north area of Dongpu Depression:taking example of former well Qiancan 2[J].Inner Mongolian Petrochemical Industry,2002,28(4):233-235.

    • [18] 周杰,庞雄奇.一种生排烃量计算方法探讨与应用 [J].石油勘探与开发,2002,29(1):24-27.ZHOU Jie,PANG Xiongqi.A method for calculating the quantity of hydrocarbon generation and expulsion [J].Petroleum Exploration and Development,2002,29(1):24-27.

    • [19] 张卫海,陈中红,查明,等.东营凹陷烃源岩排油机理 [J].石油学报,2006,27(5):46-50.ZHANG Weihai,CHEN Zhonghong,ZHA Ming,et al.Hydrocarbon expulsion mechanism for source rock in Dongying Depression[J].Acta Petrolei Sinica,2006,27(5):46-50.

    • [20] 张晓宇,梁卫.油气初次运移的控制因素与排烃效率[J].江汉石油学院学报,1993,15(2):23-26.ZHANG Xiaoyu,LIANG Wei.On the factors controlling the primary migration and the expulsive efficiency[J].Journal of Jianghan Petroleum Institute,1993,15(2):23-26.

    • [21] SANDVIK E,YOUNG W,CURRY D.Expulsion from hydrocarbon sources:the role of organic absorption[J].Organic Geochemistry,1992,19(1/2/3):77-87.

    • [22] LEWAN M,WINTERS J,MCDONALD J.Generation of oil-like pyrolyzates from organic-rich shales[J].Science,1979,203(4383):897-899.

    • [23] HORSFIELD B,SCHENK H,MILLS N,et al.An investigation of the in-reservoir conversion of oil to gas:compositional and kinetic findings from closed-system programmed-temperature pyrolysis [J].Organic Geochemistry,1992,19(1/2/3):191-204.

    • [24] LEWAN M D,DPLAN M P,CURTIS J B.Effects of smectite on the oil-expulsion efficiency of the Kreyenhagen Shale,San Joaquin Basin,California,based on hydrous-pyrolysis experiments [J].AAPG Bulletin,2014,98(6):1091-1109.

    • [25] 马卫,李剑,王东良,等.烃源岩排烃效率及其影响因素[J].天然气地球科学,2016,27(9):1742-1751.MA Wei,LI Jian,WANG Dongliang,et al.Hydrocarbon expulsion efficiency of source rocks and its influencing factors [J].Natural Gas Geoscience,2016,27(9):1742-1751.

    • [26] STOCKHAUSEN M.Experimental simulation of hydrocarbon expulsion[D].Kiel:Kiel University,2015.

    • [27] MACKENZIE A,LEYTHAEUSER D,SCHAEFER R,et al.Expulsion of petroleum hydrocarbons from shale source rocks[J].Nature,1983,301(5900):506-509.

    • [28] BURNHAM A K,BRAUN R L.Development of a detailed model of petroleum formation,destruction,and expulsion from lacustrine and marine source rocks[J].Organic Geochemistry,1990,16(1/2/3):27-39.

    • [29] 张冬梅,张延延,郭隽菁,等.基于岩石热解参数图版的烃源岩内部排烃效率计算方法[J].石油实验地质,2021,43(3):532-539.ZHANG Dongmei,ZHANG Yanyan,GUO Junjing,et al.A calculation method for the efficiency of hydrocarbon expulsion based on parameter-diagram of source rock pyrolysis[J].Petroleum Geology & Experiment,2021,43(3):532-539.

    • [30] COOLES G,MACKENZIE A,QUIGLEY T.Calculation of petroleum masses generated and expelled from source rocks [J].Organic Geochemistry,1986,10(1):235-245.

    • [31] PEPPER A S,CORVI P J.Simple kinetic models of petroleum formation.Part Ⅲ:modelling an open system [J].Marine and Petroleum Geology,1995,12(4):417-452.

    • [32] ESEME E,KROOSS B,LITTKE R.Evolution of petrophysical properties of oil shales during high-temperature compaction tests:implications for petroleum expulsion [J].Marine and Petroleum Geology,2012,31(1):110-124.

    • [33] 陈建平,孙永革,钟宁宁,等.地质条件下湖相烃源岩生排烃效率与模式[J].地质学报,2014,88(11):2005-2032.CHEN Jianping,SUN Yongge,ZHONG Ningning,et al.The efficiency and model of petroleum expulsion from the lacustrine source rocks within geological frame[J].Acta Geologica Sinica,2014,88(11):2005-2032.

    • [34] PETERS K E,BURNHAM A K,WALTERS C C.Petroleum generation kinetics:single versus multiple heating-ramp open-system pyrolysis [J].AAPG Bulletin,2015,99(4):591-616.

    • [35] 侯宇光,何生,易积正,等.页岩孔隙结构对甲烷吸附能力的影响 [J].石油勘探与开发,2014,41(2):248-256.HOU Yuguang,HE Sheng,YI Jizheng,et al.Effect of pore structure on methane sorption capacity of shales [J].Petroleum Exploration and Development,2014,41(2):248-256.

    • [36] GIESCHE H.Mercury porosimetry:a general(practical)overview[J].Particle & Particle Systems Characterization,2006,23(1):9-19.

    • [37] 李志明,刘雅慧,何晋译,等.陆相页岩油“甜点”段评价关键参数界限探讨[J].石油与天然气地质,2023,44(6):1453-1467.LI Zhiming,LIU Yahui,HE Jinyi,et al.Limits of critical parameters for sweet-spot interval evaluation of lacustrine shale oil [J].Oil & Gas Geology,2023,44(6):1453-1467.

    • [38] 刘鹏,张磊,王胜奎,等.济阳坳陷古近系页岩油运移路径探讨及其石油地质意义[J].中国石油大学学报(自然科学版),2022,46(6):89-98.LIU Peng,ZHANG Lei,WANG Shengkui,et al.Discussion on migration path of Paleogene shale oil in Jiyang Depression and its petroleum geological significance [J].Journal of China University of Petroleum(Edition of Natural Science),2022,46(6):89-98.

  • 版权所有 中国石油大学学报(自然科学版)编辑部 Copyright©2008 All Rights Reserved
    主管单位:中华人民共和国教育部 主办单位:中国石油大学(华东)
    地址: 青岛市黄岛区长江西路66号中国石油大学期刊社 邮编:266580 电话:0532-86983553 E-mail: journal@upc.edu.cn
    本系统由:北京勤云科技发展有限公司设计