引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览次   下载 本文二维码信息
码上扫一扫!
分享到: 微信 更多
考虑气体多层吸附的表面扩散传输模型
王登科1,2,3,4,李文睿1,3,浦海2,魏建平1,3,4,于充1,3
(1.河南理工大学河南省瓦斯地质与瓦斯治理重点实验室-省部共建国家重点实验室培育基地,河南焦作454000;2.中国矿业大学深部岩土力学与地下工程国家重点实验室,江苏徐州 221116;3.河南理工大学安全科学与工程学院,河南焦作 454000;4.煤炭安全生产河南省协同创新中心,河南焦作 454000)
摘要:
纳米孔内气体主要以吸附态为主,孔隙壁面的表面扩散传输对多孔介质内气体流动的贡献不容忽视。鉴于Langmuir单层吸附模型不能有效描述高温高压条件下的气体吸附特征,以单层吸附覆盖度为基础,推导出新的吸附气体表面扩散系数的理论计算公式,并利用相关实验和理论数据验证其合理性和准确性。在此基础上构建纳米孔隙壁面气体多层吸附表面扩散模型,分析压力和温度对表面扩散传输的影响效应和规律。结果表明:提出的新的吸附气体表面扩散系数计算公式在计算吸附气体表面扩散系数方面更具优势,有效反映了气体分子的多层吸附特征;基于多层吸附理论所建立起来的吸附气体表面扩散新模型,综合考虑了温度和压力的耦合效应,比传统气体表面扩散模型更加准确可靠;压力和温度是影响吸附气体表面扩散的两个重要方面,在以表面扩散传输为主的纳米孔中,气体表面扩散通量的压力影响效应显著(压力升高9 MPa,通量增大2个数量级),温度影响效应较弱(平均温度每升高1 ℃,通量降低1.13%)。
关键词:  多层吸附  表面扩散模型  纳米孔隙  温度影响  压力影响
DOI:10.3969/j.issn.1673-5005.2020.01.013
分类号:::TE 312
文献标识码:A
基金项目:国家重点研发计划项目(2017YFC0804207);国家自然科学基金项目(51774118,51574112);教育部“创新团队发展计划”项目(IRT_16R22);深部岩土力学与地下工程国家重点实验室开放基金项目(SKLGDUEK1814);河南省教育厅高校重点科研项目(18A620001);煤矿灾害动力学与控制国家重点实验室访问学者基金项目(2011DA105287-FW201606)。
A surface diffusion transport model considering multilayer adsorption behavior of gas
WANG Dengke1,2,3,4, LI Wenrui1,3, PU Hai2, WEI Jianping1,3,4, YU Chong1,3
(1.State Key Laboratory Cultivation Base for Gas Geology and Gas Control in Henan Polytechnic University, Jiaozuo 454000, China;2.State Key Laboratory for GeoMechanics and Deep Underground Engineering in China University of Mining & Technology, Xuzhou 221116, China;3.School of Safety Science and Engineering in Henan Polytechnic University, Jiaozuo 454000, China;4.Coal Production Safety Collaborative Innovation Center in Henan Province, Jiaozuo 454000, China)
Abstract:
Gas mainly exists as adsorbed phase in nanopores, so the contribution of surface diffusion of adsorbed gas to the total gas flow cannot be ignored. Due to Langmuir monolayer adsorption cannot effectively describe the characteristics of gas adsorption under high temperature and high pressure, a new theoretical formula about surface diffusion coefficient of adsorbed gas was developed on the basis of monolayer adsorption coverage concept. And, its rationality and accuracy were verified by the relevant experimental and theoretical data. Further, a surface diffusion model about multilayer adsorption in pore wall was constructed, and the effects of pressure and temperature on surface diffusion transport were analyzed. The results show that the proposed formula about surface diffusion coefficient is more advantageous compared to the monolayer adsorption, which effectively reflects the multilayer adsorption characteristics of gas molecules. Based on multilayer adsorption theory, the new surface diffusion model that coupling temperature and pressure is more accurate and reliable than the traditional surface diffusion model. Pressure and temperature are two important aspects that affect the transport of surface diffusion. The effect of pressure on surface diffusion flux is significant in the nanopores dominated by surface diffusion transport (the pressure increases 9 MPa, the flux increases two orders of magnitude). The effect of temperature on surface diffusion flux is weak (the average temperature increases by 1 ℃, and the flux decreases by 1.13%).
Key words:  multilayer adsorption  surface diffusion model  nanopore  temperature effect  pressure effect
版权所有 中国石油大学学报(自然科学版)编辑部 Copyright©2008 All Rights Reserved
主管单位:中华人民共和国教育部 主办单位:中国石油大学(华东)
地址: 青岛市黄岛区长江西路66号中国石油大学期刊社 邮编:266580 电话:0532-86983553 E-mail: journal@upc.edu.cn
本系统由:北京勤云科技发展有限公司设计