文章编号:1673-5005(2010)01-0018-06

济阳坳陷中生代负反转构造发育特征

侯旭波,吴智平,李 伟

(中国石油大学地球资源与信息学院,山东东营257061)

摘要:以高精度三维地震资料和钻井资料为基础,综合运用构造解析、平衡剖面恢复、断层活动速率和反转强度系数 等方法,对济阳坳陷中生代负反转构造发育特征进行分析。结果表明:济阳坳陷中生代负反转构造以断层反转为主 要表现形式,走向以 NW 向为主,剖面上表现为断面延伸至新生界或隐伏于新生界之下2种类型,卷入地层可划分为 挤压剥蚀层序(古生界)、压-张过渡层序(侏罗系)和拉张裂陷层序(下白垩统);负反转断层的主反转期为晚三叠世 至早白垩世,断层活动强度相应经历了较大负值、较小负值和正值的变化;主反转期内反转强度系数为1~7,整体具 有自北东向南西降低的趋势。

关键词:济阳坳陷;负反转断层;几何学特征;反转强度;断层活动性 **中图分类号**:P 542.3 **文献标志码**:A

Development characteristics of Mesozoic negative inversion structures in Jiyang depression

HOU Xu-bo, WU Zhi-ping, LI Wei

(College of Geo-Resources and Information in China University of Petroleum, Dongying 257061, China)

Abstract: Based on high-precision seismic data and drilling data, the development characteristics of Mesozoic negative inversion structures in Jiyang depression were studied by using the methods of structural analysis, balanced cross section, fault activity rate and inversion intensity coefficient. The results show that the main manifestation of the Mesozoic negative inversion structures in Jiyang depression is fault inversion and the fault strike is mainly NW trending. The negative inversion structures in the vertical section extended to Cenozoic or buried in Cenozoic. Involved formation is subdivided into extrusion and thrusting sequence (Paleozoic), extrusion – extension sequence (Jurassic) and extension chasmic sequence (Lower Cretaceous). The main inversion phase is from Late Triassic to Early Cretaceous and the activity intensity of the negative inversion fault correspondingly shows larger negative values, smaller negative values and positive values. The inversion intensity coefficient in main inversion phase is from 1 to 7, and overall inversion intensity decreases from northeast to southwest. **Key words**: Jiyang depression; negative inversion fault; geometry characteristics; inversion intensity; fault activity

反转构造是一种叠加复合构造,为同一地质体 在不同地质历史时期应力改变造成伸展或压缩构造 的垂向叠加。依据伸展构造和压缩构造的叠加顺 序,可将反转构造分为正反转和负反转构造两大 类^[1]。反转构造作为一种重要的构造类型,国内外 学者从几何学、运动学及成因机制等方面展开了深 入研究^[2-11],理论体系得到快速发展。值得注意的 是,现有的反转构造研究多集中于正反转构造,负反 转构造的研究相对较少。济阳坳陷具有独特的区域 地质背景及较高的勘探程度,成为负反转构造研究 的理想区域,人们从不同方面对济阳坳陷中生代负 反转构造进行了一些定性研究^[12-16]。近年来,随着 定量分析技术的应用及资料的积累,济阳坳陷中生 代负反转构造的研究趋于定量化^[17-18],但整体而 言,济阳坳陷中生代负反转构造定量化的研究仅限 于局部,整体尚缺乏系统和规律性的认识。笔者以

收稿日期:2009-06-20

基金项目:国家油气专项课题(XQ-2004-03);教育部高等学校博士学科点专项科研基金项目(20090133120003)

作者简介:侯旭波(1980-),男(汉族),山东潍坊人,博士研究生,主要从事构造地质学研究。

济阳坳陷负反转构造为研究对象,在对大量高精度 三维地震资料精细解释的基础上,从平面、剖面及层 序等方面对负反转构造的几何学特征进行深入剖 析,并运用平衡剖面技术、断层活动速率法、反转强 度系数法等方法定量分析其运动学特征,以期取得 对济阳坳陷负反转构造发育特征系统和全面的认 识。

1 几何学特征

地震资料分析表明,济阳坳陷负反转构造以断

层的负反转为主要表现形式,具体包括现今惠民凹陷的滋镇断层、阳信断层,东营凹陷的石村断层、陈南断层(东段)、王家岗地区次级断层,车镇凹陷的车西断层、堤南断层(东段),沾化凹陷的罗西断层、孤西断层、五号桩断层、孤东断层以及埕岛地区的埕北断层、埕北20断层。坳陷东北部负反转断层相对发育,而西南部较少,整体近平行排列,倾向均为南西或南南西,走向尽管以北西向为主,但由西至东、由南至北断层走向具有由北西或北西西向北北西递变的趋势(图1)。

图1 济阳坳陷中生代负反转断层平面分布

Fig. 1 Plane distribution of Mesozoic negative inversion faults in Jiyang depression

负反转断层在剖面上有两种表现形式:一种为 断面延伸至新生界,部分断至新近系,其断面形态多 为铲式或坡坪式,规模较大,对中、新生代盆地的发 育均起控制作用,是负反转断层的主要表现形式,如 五号桩断层、埕南断层等(图2(a));另一种隐伏于 新生界之下,埋藏较深,在地震剖面上不易识别,断 面形态表现为平面式或铲式,该类负反转断层在区 内发育较少,规模相对较小,仅对中生代盆地的发育 起控制作用,如王家岗地区次级断层等(图2(b))。

济阳坳陷负反转断层卷入的地层包括古生界和 中生界,存在 Pz/Mz、J/K₁和 K₁/E 3 个明显的角度 不整合面,据此可以将卷入地层划分为古生界、侏罗 系、下白垩统 3 个构造层,缺失三叠系和上白垩统 (图2,图中测线位置见图1)。

古生界的剖面形态表现为向断层面减薄的楔形。内部地震反射特征稳定,连续性较好,层序变形

微弱,平行或亚平行结构;顶部层序与不整合面 Pz/ Mz 相交。这表明古生界原始沉积比较稳定,后期层 序顶部遭受削截,剥蚀厚度沿指向断面的方向逐渐 增大。

侏罗系剖面几何形态呈现与古生界类似的楔形特征。层序内部地震反射呈亚平行一乱岗状结构, 连续性中一低,底部层序沿指向断面方向超覆于古 生界之上,顶部层序与不整合面 J/K₁ 平行,无遭受 剥蚀的痕迹,因此侏罗系层序特征应为侏罗纪时期 地层披覆式沉积所致。

下白垩统剖面几何形态表现为与侏罗系和古生 界相反的楔形特征,其内部层序可具体划分蒙阴组 (K₁m)和西洼组(K₁x),二者呈微角度不整合接触 关系。层序内部远离断面处地震反射呈发散状,连 续性中一高,近断面处地震反射呈杂乱状。蒙阴组 沿背离断面方向超覆于侏罗系之上,近断面处地层 的充填特征比较明显;西洼组内部层序与 K₁m/K₁x 不整合面呈近平行关系,顶部层序具有削蚀特征。 下白垩统层序特征体现了张性伸展断层对地层沉积 与剥蚀的控制作用。 综上所述,依据各构造层的层序特征将济阳凹 陷负反转断层卷入的地层划分为受挤压剥蚀层序 (古生界)、压-张过渡层序(侏罗系)和拉张裂陷层 序(下白垩统)。

图 2 济阳坳陷地震剖面反映中生代负反转断层

Fig. 2 Seismic profile in Jiyang depression shows Mesozoic negative inversion faults

2 运动学特征

2.1 反转时期

反转时期的确定是反转构造运动学研究的重要 部分。负反转断层的演化过程一般表现为由逆到正 的转变。受构造活动影响,负反转断层的不同演化 阶段对地层沉积与剥蚀的控制作用不同,导致形成 不同的层序特征,并且在不同阶段转换过程中产生 了层序间的不整合面。因此,通过不整合面及卷入 地层的层序特征分析可以确定反转时期。

结合济阳坳陷负反转断层的层序特征分析,古 生界"薄底"或"秃底"的特征^[13]为负反转断层的挤 压逆冲阶段所致。结合区域地质背景资料,负反转 断层的挤压逆冲期应为晚三叠世,侏罗系和下白垩 统层序特征则分别代表了侏罗纪的压-张过渡阶段 和早白垩世的拉张裂陷阶段,不整合面 K₁/E 则标 志着负反转断层一个完整演化序列的完成,即负反 转断层的主反转期为晚三叠世至早白垩世。侏罗系 层序特征显示该时期负反转断层虽处于由逆到正的 过渡阶段,但仍表现为逆断层性质,而下白垩统蒙阴 组近断面处充填特征比较明显且近断面处呈杂乱状 反射,表明蒙阴组沉积时期负反转断层已经开始拉 张,且断层活动较强烈,因此负反转断层由逆到正的 转折点应为侏罗系沉积后、蒙阴组沉积前。

2.2 断层活动速率

济阳坳陷负反转断层经历了由逆断层到正断层 的演化过程,其活动强度可以借助断层活动速率法 来定量、直观的描述。断层活动速率定义为某一地 质时期内的断层落差与时间跨度的比值^[19]。由于 不同类型的断层对两盘地层所造成的沉积、剥蚀作 用不同,因此其断层活动速率计算方法不同。

当负反转断层由逆断层转变为正断层时,断层 活动速率表现为由负值到正值的转变,其绝对值则 体现了断层在某一阶段的活动强度。笔者对济阳坳 陷不同测线处晚三叠世至早白垩世负反转断层的活 动速率进行了计算(图3)。

晚三叠世负反转断层处于逆断期,断层活动速 率为-20~-70 m/Ma,各负反转断层均表现为强 挤压逆冲性质,坳陷西南部断层活动速率平均值大 于东北部,断层活动强度呈现出自南西向北东降低 的趋势。侏罗纪负反转断层处于由逆到正的过渡 期,断层活动速率为0~-10 m/Ma,表现为弱挤压 的性质,活动强度整体差异不大。早白垩世负反转 断层进入正断期,断层活动速率为30~55 m/Ma,坳 陷东北部断层活动速率平均值大于西南部,断层活 动强度呈现与晚三叠世相反的分布趋势,但整体较 晚三叠世略小。

图 3 晚三叠世至早白垩世各负反转断层活动速率随时间变化

Fig. 3 Variation of activity velocity of negative inversion faults with time from late Triassic to early Cretaceous

综合上述分析,主反转期内断层活动速率表现 为较大负值→较小负值→正值的变化,反映了不同 应力场作用下负反转断层由强挤压逆冲→弱挤压→ 拉张裂陷的发育过程,同时体现了晚三叠世挤压应 力场南西强、北东弱和早白垩世拉张应力场北东强、 南西弱的分布特点。

2.3 反转强度

济阳坳陷负反转构造虽然经历了相同的演化阶段,但是受区域应力场及局部构造影响,各负反转构造的强度不同,因此定量描述反转构造强度对于反映不同区域负反转构造的差异性及应力场强弱有重要意义。目前定量表征反转构造强度的方法有构造高程、生长指数、位移-距离曲线、反转率等^[8,20-21],但这些方法存在一定的缺点和不足,主要表现在:构造高程与生长指数可以定量表征同生长断层的反转强度,但对于边界控盆断层则无法表征;反转率、位移-距离曲线对于计算存在零点的反转构造比较有效,如果断层发生完全反转,则不存在零点,这两种方法则无法计算。

济阳坳陷负反转断层多数为边界控盆断层,且 均发生完全反转,不存在零点,因此以上定量表征方 法对于济阳坳陷负反转构造无法适用。笔者结合济 阳坳陷负反转构造具体实例,对定量表征方法进行 改进,提出反转强度系数(*C_i*)概念,即负反转断层 拉张裂陷期滑移距离与挤压剥蚀期滑移距离的比 值,表达式为

 $C_{\rm i} = d_{\rm e}/d_{\rm c}$.

式中, d_{e} 为拉张裂陷期上盘下滑的位移, $m;d_{e}$ 为挤 压剥蚀期断层上盘上升的位移, m_{e}

当断层发生完全反转时,上盘下滑必须先抵消 逆断阶段上升的位移量才能继续下滑表现为正断 层,因此 $d_e = d_{e'} + d_c$,故反转强度系数为 $C_i = (d_{e'} + d_c)/d_c, d_{e'}$ 为反转后显示的上盘下滑的视位移,m (图4)。断层未完全反转时, $d_e < d_c, C_i < 1$;断层恰 好完全反转时, $d_e = d_c, C_i = 1$;断层继续拉张下滑, 完全反转为正断层时, $d_e > d_c, C_i > 1$ 。

反转强度系数法克服反转率、位移一距离曲线等 方法的缺点,对于生长断层和边界控盆断层均适用, 可以定量表征未完全反转断层和已完全反转断层的 反转强度。但是,反转强度系数计算方法必须建立 在对反转构造过程精确分析的基础上。本文中运用 平衡剖面技术对负反转断层的演化过程进行了恢 复,以确保对反转构造演化过程的精确描述,进而求 取拉张位移 d。和挤压位移 d。,以此为基础计算了济 阳坳陷各负反转断层的反转强度系数(表1)。

图 4 计算反转强度系数的参数求取示意图

Fig. 4 Stetch map of parameters to calculate inversion intensity coefficient

表1 济阳坳陷各负反转断层反转强度系数

Table 1 Inversion intensity coefficients of negative

inversion faults in Jiyang depression

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \frac{44.4}{5} + \frac{1}{100} + $
近 SN 孤东 断层 GD1 1.122 737 1.522 1.67 近 SN 断层 GD2 4.500 2475 1.818 1.67 塩北 20 断层 CB20 2.006 367 5.471 1.41 1.67 塩北 CB1 2.700 880 3.068 3.068 1.67 NW-1 塩北 CB1 2.700 880 3.068 5.298 五号桩 断层 WHZ1 3.555 921 3.860 5.298 五号桩 断层 WHZ2 3.959 743 5.328 5.298 (54-Y135) 3.276 706 4.640 5.298 塩南 س新屋 CN1 2.925 825 3.545 低 CN2 6.058 868 6.979
$ \frac{120 \text{ K}^{\circ} \text{ \mathbb{M}\mathbb{R}$}}{\text{ \mathbb{M}\mathbb{R}$}} = \frac{\text{GD2}}{\text{GD2}} = \frac{4.500}{2.006} = \frac{2475}{3.67} = 1.818 + 1.67} \\ \frac{12120 \text{ \mathbb{M}\mathbb{R}$}}{\frac{12120 \text{ \mathbb{M}\mathbb{R}$}}{\text{ \mathbb{L}\mathbb{R}$}}} = \frac{\text{GD2}}{2.006} = \frac{2.006}{367} = \frac{367}{5.471} \\ \frac{12120 \text{ \mathbb{M}\mathbb{R}$}}{\text{ \mathbb{M}\mathbb{R}$}} = \frac{\text{CB2}}{2.700} = \frac{880}{3.068} = 3.068} \\ \frac{12120 \text{ \mathbb{M}\mathbb{R}$}}{\text{ \mathbb{M}\mathbb{R}$}} = \frac{\text{CB2}}{6.806} = \frac{6.806}{795} = 8.561} \\ \frac{12120 \text{ \mathbb{M}\mathbb{R}$}}{\text{ \mathbb{M}\mathbb{R}$}} = \frac{\text{CB2}}{6.806} = \frac{6.806}{795} = 755} = 8.561} \\ \frac{12120 \text{ \mathbb{M}\mathbb{R}$}}{\text{ \mathbb{M}\mathbb{R}$}} = \frac{12.23}{3.555} = 921} = 3.860} \\ \frac{12120 \text{ \mathbb{M}\mathbb{R}$}}{\text{ \mathbb{M}\mathbb{R}$}} = \frac{12.23}{3.555} = 921} = 3.860} \\ \frac{12120 \text{ \mathbb{M}}}{\text{ \mathbb{M}\mathbb{R}$}} = \frac{12.23}{3.276} = 706} = 4.640} \\ \frac{12120 \text{ \mathbb{M}}}{\text{ \mathbb{M}\mathbb{R}$}} = \frac{12.23}{3.276} = 706} = 4.640} \\ \frac{12120 \text{ \mathbb{M}}}{\text{ \mathbb{M}}} = \frac{12.23}{3.276} = 706} = 4.640} \\ \frac{12120 \text{ \mathbb{M}}}{\text{ \mathbb{M}}} = \frac{12.23}{3.276} = 706} = 4.640} \\ \frac{12120 \text{ \mathbb{M}}}{\text{ \mathbb{M}}} = \frac{12.23}{3.276} = 706} = 4.640} \\ \frac{12120 \text{ \mathbb{M}}}{\text{ \mathbb{M}}} = \frac{12.23}{3.276} = 706} = 4.640} \\ \frac{12120 \text{ \mathbb{M}}}}{\text{ \mathbb{M}}} = \frac{12.23}{3.276} = 706} = 4.640} \\ \frac{12120 \text{ \mathbb{M}}}{\text{ \mathbb{M}}} = \frac{12.23}{3.276} = 706} = 4.640} \\ \frac{12120 \text{ \mathbb{M}}}{\text{ \mathbb{M}}} = \frac{12.23}{3.276} = 706} = 4.640} \\ \frac{12120 \text{ \mathbb{M}}}{\text{ \mathbb{M}}} = \frac{12.23}{3.276} = 706} = 4.640} \\ \frac{12120 \text{ \mathbb{M}}}{\text{ \mathbb{M}}} = \frac{12.23}{3.276} = 706} = 4.640} \\ \frac{12120 \text{ \mathbb{M}}}{\text{ \mathbb{M}}} = \frac{12.23}{3.276} = 706} = 4.640} \\ \frac{12120 \text{ \mathbb{M}}}{\text{ \mathbb{M}}} = \frac{12.23}{3.276} = 706} = 4.640} \\ \frac{12120 \text{ \mathbb{M}}}{\text{ \mathbb{M}}} = \frac{12.23}{3.276} = 706} = 4.640} \\ \frac{12120 \text{ \mathbb{M}}} = \frac{12.23}{3.276} = 706} = 4.640} \\ \frac{12120 \text{ \mathbb{M}}}{\text{ \mathbb{M}}} = \frac{12.23}{3.276} = 706} = 1.23} \\ \frac{12120 \text{ \mathbb{M}}} = \frac{12.23}{3.276} = 1.23} \\$
<
照W-1 理北 断层 CB1 2.700 880 3.068 NW-1 断层 CB2 6.806 795 8.561 五号桩 断层 WHZ1 3.555 921 3.860 CS4-Y135 3.276 706 4.640 星南 斯层 CN1 2.925 825 3.545 医N2 6.058 868 6.979
NW-1 断层 CB2 6.806 795 8.561 5.298 五号桩 断层 WHZ1 3.555 921 3.860 5.298 - - WHZ2 3.959 743 5.328 - - - - - - - - - - - - - - - - - - - -
WW-1 WHZ1 3.555 921 3.860 5.298 五号桩 断层 WHZ2 3.959 743 5.328 C54-Y135 3.276 706 4.640 上 CN1 2.925 825 3.545 些転息 CN2 6.058 868 6.979
C54-Y135 3. 276 706 4. 640 CN1 2. 925 825 3. 545 堤南 CN2 6. 058 868 6. 979
CN1 2.925 825 3.545 埕南 CN2 6.058 868 6.979
埕南 CN2 6.058 868 6.979 班尼 CN2 6.058 868 6.979
CN3 5. 636 548 10. 285
GX1 4.428 1915 2.312 5.137
孤西 GX2 2.025 326 6.212
网运 C54-Y135 1.950 1305 1.490
车西断层 CX 1.733 413 4.196
LX1 4.230 962 4.397
罗西断层 LX2 3.640 629 5.791
C54-Y135 1. 570 1 354 1. 160
NW-3 CND1 5.474 1695 2.698 3.753
陈宵断层 CND2 8.008 1442 5.552
王家岗 WJG1 5.033 2420 2.080
断层 WJG2 2.822 756 3.732
YX1 3.961 1437 2.756
阳后则云 YX2 2.676 705 3.796
10W-4 SC1 1.586 452 3.509 3.632
口心则层 SC2 2.147 579 3.708

由表1可见,济阳坳陷负反转断层强度系数为 1~7,负反转断层均完全反转。不同负反转断层的 反转强度不同,同一负反转断层的不同区段反转强 度也存在差异性。埕南断层反转强度系数为 6.936,反转强度最大,孤东断层反转强度系数为 1.67,反转强度最小。坳陷内各负反转断层的强度 系数平均值为4.14,反转强度相对较大。NW 走向 负反转断层的反转强度均大于近 SN 走向负反转断 层的反转强度,表明区域应力场主应力方向以 NE-SW 为主。NW 向各组反转强度系数平均值具有自 北东向南西降低的趋势,即坳陷东北部负反转断层 的反转强度整体大于西南部。

综合上述分析可知,断层活动强度晚三叠世南 西强、北东弱和早白垩世北东强、南西弱的分布特点 致使研究区逆冲强度西南部大于东北部,而拉张强 度则东北部大于西南部,造成反转强度自北东向南 西降低。

3 结 论

(1)济阳坳陷负反转构造以断层的负反转为主 要表现形式,平面上以 NW(NWW)走向为主,整体 近平行排列,剖面上表现为断面延伸至新生界或隐 伏于新生界之下2种类型,卷入的地层依据层序特 征可划分为受挤压剥蚀层序(古生界)、压-张过渡 层序(侏罗系)和拉张裂陷层序(下白垩统)。

(2)济阳坳陷负反转断层主反转期可分为晚三 叠世的挤压逆冲期、侏罗纪的压-张过渡期和早白垩 世的拉张裂陷期,断层活动速率相应表现为较大负 值→较小负值→正值的变化,且活动强度具有晚三 叠世南西强、北东弱和早白垩世北东强、南西弱的分 布特点。

(3)反转强度系数法克服了反转率、位移一距离 曲线等方法的缺陷,对于生长断层和边界控盆断层 均适用,可以定量表征其反转强度。济阳坳陷各负 反转断层在主反转期内反转强度系数值为1~7,断 层均完全反转,反转强度具有自北东向南西降低的 趋势。

参考文献:

[1] 陈昭年,陈发景.反转构造与油气圈闭[J].地学前缘,

1995,2(3):96-99.

CHEN Zhao-nian, CHEN Fa-jing. Inversion structures and their relationship to traps of oil and gas [J]. Earth Science Frontiers, 1995, 2(3):96-99.

- [2] GLENNIE K W, BOEGER P L. Solepit inversion tectonics[C]// ILLING L V, HOBSON G D. Petroleum geology of the continental shelf of northwest Europe. London: Institute of Petroleum, 1984:110-120.
- [3] VENTISETTE C Del, MONTANARI D, SANI F, et al. Basin inversion and fault reactivation in laboratory experiments[J]. Journal of Structural Geology, 2006,28(11): 2067-2083.
- [4] DUBOIS A, ODONNE F, MASSONNAT G, et al. Analogue modelling of fault reactivation: tectonic inversion and oblique remobilisation of grabens [J]. Journal of Structural Geology, 2004,24(11):1741-1752
- [5] 张功成,金利.论反转构造[J].海洋地质与第四纪地质,1997,17(4):83-90.
 ZHANG Gong-cheng, JIN Li. On inversion tectonics and structures[J]. Marine Geology & Quaternary Geology, 1997,17(4):83-90.
- [6] 王同和,王根海,赵宗举.中国含油气盆地的反转构造
 样式及其油气聚集[J].海相油气地质,1997,6(3):
 27-37.

WANG Tong-he, WANG Gen-hai, ZHAO Zong-ju. Basin inversion structure and petroleum accumulation of China [J]. Marine Origin Petroleum Geology, 1997,6(3):27-37.

- [7] 胡望水,刘学锋,吕新华,等.论正反转构造的分类
 [J].新疆石油地质,2000,21(1):5-8.
 HU Wang-shui, LIU Xue-feng, LÜ Xin-hua, et al. On the classification of positive inversion structure[J]. Xin-jiang Petroleum Geology, 2000,21(1):5-8.
- [8] 汤良杰,金之钧. 塔里木盆地北部隆起牙哈断裂带负 反转过程与油气聚集[J]. 沉积学报,2000,18(2):302-309.

TANG Liang-jie, JIN Zhi-jun. Negative inversion process and hydrocarbon accumulation of Yaha fault belt in northern uplift, Tarim Basin, China[J]. Acta Sedimentologica Sinica, 2000,18(2):302-309.

[9] 胡望水,李瑞升,李涛.正反转构造动力学成因探讨 [J].石油天然气学报,2007,29(4):23-27.

HU Wang-shui, LI Rui-sheng, LI Tao. Discussion on dynamic genesis of positive inversion structure [J]. Journal of Oil and Gas Technology, 2007,29(4):23-27.

- [10] 姜华,王华,肖军,等.珠江口盆地珠三坳陷构造反转与油气聚集[J].石油学报,2008,29(3):372-377.
 JIANG Hua, WANG Hua, XIAO Jun, et al. Tectonic inversion and its relationship with hydrocarbon accumulation in Zhu-3 depression of Pearl River Mouth Basin [J]. Acta Petrolei Sinica, 2008,29(3):372-377.
- [11] 王同和,蔡希源.中国含油气区反转构造[M].北京: 石油工业出版社,2001.
- [12] 谭明友,邴进营,金学新,等.山东北部滨海地区负反转断层及古生界负反转结构成因分析[J].石油地球物理勘探,1996,31(6):25-34.
 TAN Ming-you, BING Jin-ying, JIN Xue-xin, et al. Origin analysis of both negative inversion faults and negative inversion structures in Paleozoic group in coastal region of north Shandong Province, China[J]. Oil Geophysical Prospecting, 1996,31(6):25-34.
- [13] 陈洁,董冬,邱明文.济阳坳陷内的负反转构造及其 石油地质意义[J].石油实验地质,1999,21(3):201-206.

CHEN Jie, DONG Dong, QIU Ming-wen. Negative inversion structure in the Jiyang depression and its petroleum geological significance, China[J]. Experimental Petroleum Geology, 1999,21(3):201-206.

- [14] 李伟,吴智平,张明华,等. 埕岛地区中生代和新生代 断层发育特征及其对沉积的控制作用[J]. 中国石油 大学学报:自然科学版,2006,30(1):1-6.
 LI Wei, WU Zhi-ping, ZHANG Ming-hua, et al. Development characteristic of Mesozoic and Cenozoic faults and its control over deposition in Chengdao area [J]. Journal of China University of Petroleum (Edition of Natural Science), 2006,30(1):1-6.
- [15] 王力,金强,万丛礼,等. 沾化凹陷孤北-渤南地区深 层天然气成因类型及其控制因素[J].中国石油大学 学报:自然科学版,2008,32(5):35-40.
 WANG Li, JIN Qiang, WAN Cong-li, et al. Genetic types and its controlling factors of deep natural gas in Gubei-Bonan area, Zhanhua depression[J]. Journal of China University of Petroleum (Edition of Natural Science), 2008,32(5):35-40.
- [16] JINBAO S, WENBIN Z, HUAFU L, et al. Geometry styles and quantization of inversion structures in the Jiyang depression, Bohai Bay Basin, eastern China [J]. Marine and Petroleum Geology, 2009,26(1):25-38.

(下转第28页)