en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

段忠丰(1982-),男,讲师,博士,研究方向为地热资源勘查、地热开发数值模拟。E-mail:duanzf@upc.edu.cn。

通信作者:

段忠丰(1982-),男,讲师,博士,研究方向为地热资源勘查、地热开发数值模拟。E-mail:duanzf@upc.edu.cn。

中图分类号:P 314

文献标识码:A

文章编号:1673-5005(2024)01-0046-09

DOI:10.3969/j.issn.1673-5005.2024.01.005

参考文献 1
KONG Y,PANG Z,SHAO H,et al.Recent studies on hydrothermal systems in China:a review[J].Geothermal Energy,2014,19(2):2-19.
参考文献 2
BERTANI R.Geothermal power generation in the world 2010-2014 update report[J].Geothermics,2016,60:31-43.
参考文献 3
许天福,袁益龙,姜振蛟,等.干热岩资源和增强型地热工程:国际经验和我国展望[J].吉林大学学报(地球科学版),2016,46(4):1139-1152.XU Tianfu,YUAN Yilong,JIANG Zhenjiao,et al.Hotdry rock and enhanced geothermal engineering:international experience and China prospect[J].Journal of Jilin University(Earth Science Edition),2016,46(4):1139-1152.
参考文献 4
OLASOLO P,JUÁREZ M C,MORÁLES M P,et al.Enhanced geothermal systems(EGS):a review[J].Renewable and Sustainable Energy Reviews,2016,56:133-144.
参考文献 5
LU S M.A global review of enhanced geothermal system(EGS)[J].Renewable and Sustainable Energy Reviews,2018,81:2902-2921.
参考文献 6
汪集旸,胡圣标,庞忠和,等.中国大陆干热岩地热资源潜力评估[J].科技导报,2012,30(32):25-31.WANG Jiyang,HU Shengbiao,PANG Zhonghe,et al.Estimate of geothermal resources potential for hot dry rock in thecontinental area of China[J].Science & Technology Review,2012,30(32):25-31.
参考文献 7
庞忠和,罗霁,程远志,等.中国深层地热能开采的地质条件评价[J].地学前缘,2020,27(1):134-151.PANG Zhonghe,LUO Ji,CHENG Yuanzhi,et al.Evaluation of geological conditions for the development of deep geothermal energy in China[J].Earth Science Frontiers,2020,27(1):134-15.
参考文献 8
QIU N S.Special collection:advances of exploration and utilization technology of geothermal resources in China[J].Energy Exploration & Exploitation,2019,37(2):605-606.
参考文献 9
ZHANG X X,ZHANG D J,ZHOU Y,et al.Energy risks zoning and demand forecasting in Jiangsu province[J].Energy Procedia,2011,5:813-817.
参考文献 10
徐立.江苏地区地热资源综合利用研究[D].南京:南京大学,2014.XU Li.The research of comprehensive utilization of geothermal resources in Jiangsu area[D].Nanjing:Nanjing University,2014.
参考文献 11
刘德民,张根袁,关俊朋,等.苏北盆地干热岩地热资源前景分析[J].地学前缘,2020,27(1):48-54.LIU Demin,ZHANG Genyuan,GUAN Junpeng,et al.Analysis of geothermal resources potential for hot dry rock in the Subei Basin[J].Earth Science Frontiers,2020,27(1):48-54.
参考文献 12
ZHUG L,ZHANG L Y,DENG Z H,et al.Three-dimensional geological modeling and resource estimation of hot dry rock in the Gonghe Basin,Qinghai province[J].Energies,2023,16(16):5871.
参考文献 13
孙明行,王瑞湖,管彦武,等.广西陆域干热型地热资源潜力估算[J].吉林大学学报(地球科学版),2022,52(4):1302-1313.SUN Minghang,WANG Ruihu,GUNA Yanwu,et al.Estimation of hot dry geothermal resources in Guangxi[J].Journal of Jilin University(Earth Science Edition),2022,52(4):1302-1313.
参考文献 14
HOWELL L,BROWN C S,EGAN S S.Deep geothermal energy in northern England:insights from 3D finite difference temperature modelling[J].Computers & Geosciences,2021,147:104661.
参考文献 15
BROWN C S.Regional geothermal resource assessment of hot dry rocks in Northern England using 3D geological and thermal models[J].Geothermics,2022,105:102503.
参考文献 16
BREEDE K,DZEBISASHYILI K,LIU X,et al.A systematic review of enhanced(or engineered)geothermal systems:past,present and future[J].Geothermal Energy,2013,1(1):4.
参考文献 17
WANG Zhuting,JIANG Guangzheng,ZHANG Chao,et al.Estimating geothermal resources in Bohai Bay Basin,Eastern China,using Monte Carlo simulation[J].Environmental Earth Sciences,2019,78:355.
参考文献 18
徐立,王良书,杨谦.江苏干热岩地热资源潜力估算[J].高校地质学报,2014,20(3):464-469.XU Li,WANG Liangshu,YANG Qian.An estimation of hot-dry-rock(HDR)resources in Jiangsu province[J].Geological Journal of China Universities,2014,20(3):464-469.
参考文献 19
段忠丰,李福来,巩亮,等.基于水热耦合模拟的油气区地热开发井网布局[J].天然气工业,2020,40(10):156-162.DUAN Zhongfeng,LI Fulai,GONG Liang,et al.Geothermal development well spacing patterns based on hydrothermal coupled modeling in oil-gas bearing areas[J].Natural Gas Industry,2020,40(10):156-162.
参考文献 20
PURESS K,OLDENBURG C,MORIDIS G.Tough2 user’s guide,version 2.0[R].LBNL-43134,1999.
参考文献 21
WILLIAMS C F,REED M J,MARINER R H.A review of methods applied by the U.S.Geological Survey in the assessment of identified geothermal resources:USGS open file report 2008-1296 [R/OL].(2008)[2023-06-17].https://doi.org/10.3133/ofr20081296.
参考文献 22
TESTER W J,ANDERSON B J,BATCHELOR A S,et al.The future of geothermal energy:impact of enhanced geothermal systems(EGS)on the United States in the 21st century:final report to the US DOE geothermal technologies program massachusetts institute of technology,Cambridge,2006[R/OL].(2006)[2023-06-17].https://www1.eere.energy.gov/geothermal/pdfs/egs_toc_front.pdf.
参考文献 23
CALCAGNO P,BAUJARD C,GUILLOU-FROTTIER L,et al.Estimation of the deep geothermal potential within the tertiary Limagne Basin(French Massif Central):an integrated 3D geological and thermal approach[J].Geothermics,2014,51:496-508.
参考文献 24
BEARDSMORE G R,RYBACH L,BLACKWELL D,et al.A protocol for estimating and mapping global EGS potential[R].Sacramento:Transactions-Geothermal Resources Council,2010.
参考文献 25
PALISADE Corp.@risk,risk analysis and simulation add-in for Microsoft Excel or Lotus 1-2-3,Windows version,user’s guide[M].New York:Palisade Corp,1995:1-4.
参考文献 26
姜光政,高堋,饶松,等.中国大陆地区大地热流数据汇编(第四版)[J].地球物理学报,2016,59(8):2892-2910.JIANG Guangzheng,GAO Peng,RAO Song,et al.Compilation of heat flow data in the continentalarea of China(4thedition)[J].Chinese Journl of Geophysics,2016,59(8):2892-2910.
参考文献 27
WAN Z J,ZHAOY S,KANG J R.Forecast and evaluation of hot dry rock geothermal resource in China[J].Renewable Energy,2005,30:1831-1846.
参考文献 28
GONZÁLEZ-GARCIA J,HAUSER J,ANNETTS D,et al.Nevado del Ruiz volcano(Colombia):a 3D model combining geological and geophysical information[C].Melbourne:Proceedings World Geothermal Congress,2015.
目录contents

    摘要

    对苏北盆地建湖隆起的干热岩资源潜力进行评价,展示华东地区沉积盆地型干热岩资源的勘探前景。基于野外勘察、室内实验和数值模拟等多手段地质分析方法分析研究区干热岩地热地质条件,以4个区域地震地质剖面为基础,建立二维热传导数值模型,模拟分析深部地温分布,确定评价深度。应用基于体积法的蒙特卡罗模拟给出合理的资源量评价分析。该方法可充分考虑参数估计的不确定性。结果表明,建湖隆起3~10 km深度内干热岩资源的可采热资源量约为44.6亿t标煤,发电潜力为692769.9 MWe,约为江苏省2022年全年用电量的49倍。

    Abstract

    This study presents an estimation of the potential of hot dry rock (HDR) resources in Jianhu Uplift, Subei Basin, demonstrating the feasibility of exploring HDR geothermal resources within the East China sedimentary basin. An integrated geological investigation was conducted, involving field work, laboratory measurements, and numerical modeling to assess the HDR geological conditions within the study area. Four geologic sections were utilized to construct 2D heat conduction numerical models, which were instrumental in comprehending the geo-temperature field and determining the estimated depth. Subsequently, a Monte Carlo simulation, employing the volume method, was applied to provide a reasonable potential estimation. This modified method effectively accounts for uncertainties associated with estimation parameters. The results show that the amount of recoverable heat resources of HDR geothermal resources within 3-10 km depth in Jianhu Uplift is about 44.6×108 tons of standard coal and the generation potential is 692769.9 MWe,more than 49 times the annual electricity consumption of Jiangsu Province in 2022.

  • 尽管中国地热直接利用量几十年来一直位居世界第一,但由于中国高温地热资源主要分布于西南藏滇地热带,资源分布与用电需求不相匹配,中国地热发电发展非常缓慢[1-2]。目前,世界各国主要开发和利用的是水热型地热资源,占已探明地热资源的10%左右,更多的地热能储存于干热岩(hot dry rock,HDR)地热资源中。深部干热岩地热资源温度更高,分布更广,利用效率更高[3]。近几十年来,增强型地热技术(enhanced geothermal system,EGS)在全球范围内得到了测试和验证,并显示出相当可观的利用前景[4-5]。因此干热岩(HDR)地热资源可能是中国地热发电突破的可行路径,并受到越来越多的关注[6-8]。江苏是中国的经济大省,但贫油少煤,每年从外省调入或国外进口的化石能源约占年能源消耗量的90%。随着经济的快速发展,能源自给率屡创新低且持续下降,能源短缺已成为江苏省经济发展的瓶颈[9]。苏北盆地位于中国东部沿海高热流地热异常带,具有丰富的地热资源[10]。初步研究表明,苏北地区具有干热岩地热资源开发前景[11],其开发利用对于促进江苏经济的可持续发展具有重要意义,有必要探讨其资源潜力。不同于一般的水热型地热资源,干热岩地热资源是储存于3~10 km深度的地壳岩石中,广泛分布地热能。资源潜力评价作为干热岩资源场地刻画的首要工作之一,其难点在于随着深度增加的地质信息的稀缺性和不确定性。干热岩潜力评价中最关键的参数是岩石温度,目前有两种确定方法:在研究程度较低时,根据地温梯度等参数推算干热岩体顶底面温度[12-13];在研究程度较高时,采用数值模拟方法,模拟三维或二维地温分布[14-15]。对于建湖隆起区,由于其研究程度较低、资料有限,笔者采用二维热传导数值模拟方法确定地温分布,并结合基于体积法的蒙特卡罗模拟来评价其干热岩地热资源潜力,可减少评价的不确定性。

  • 1 建湖隆起的地质背景

  • 建湖隆起位于苏北盆地的中部。苏北盆地是在太古宙、元古宙震旦系和古生代基底上发育起来的中新生代陆相沉积盆地。构造位置上,苏北盆地位于郯庐断裂带以东,嘉山-响水断裂带以南,扬州、如皋市以北,走向NE,宽度约260 km,面积约3.2万km2。该盆地的构造特征是“两坳夹一隆”,北部为盐阜坳陷,南部为东台坳陷,中部即为建湖隆起(图1)。

  • 建湖隆起东西向伸展,长190 km,宽10~38 km,面积3950 km2。在以片麻岩、麻粒岩和片岩为主的太古宙基底上,上元古代至第四纪地层均发育,可划分为3个地层单元:①由海相碳酸盐岩和碎屑岩组成的元古代和古生代基底;②中上三叠统和白垩纪形成的中生代碎屑岩和侵入岩浆岩;③以古近系—新近系砂岩、泥岩和第四纪松散沉积物为主的新生代沉积层序(表1)。

  • 图1 苏北盆地建湖隆起构造位置

  • Fig.1 Location of Jianhu Uplift, Subei Basin

  • 建湖隆起以平原地貌为主,海拔为2~50 m,由西向东逐渐变低。除西部丘陵地区为元古界和新近纪的露头岩层覆盖外,其余均为第四纪沉积覆盖。

  • 2 干热岩资源潜力评价方法

  • 体积法是干热岩资源潜力评价的推荐方法,已广泛用于各地干热岩资源潜力评价,以便于全球对比[16]。本次研究中采用二维热传导数值模型来分析深部温度分布,而蒙特卡罗随机模拟则用来评估评价参数的分布范围[17]

  • 2.1 地质剖面和岩石取样

  • 在研究区开展广泛的现场地质工作,包括岩石采样、水样采样、井温测井、氡(Rn)监测、CSAMT调查和钻井调查。从露头和钻孔岩心中收集25个岩石样本,以表征研究区的地层特征。

  • 基于大地电磁测深(MT)资料,对建湖隆起上地壳的地质构造进行解释。选取横跨建湖隆起的4个地质剖面(2个NE向,2个NW向)用于模拟10 km深度范围内的地温场(图2)。MT剖面上的地层和岩体分布表明,建湖隆起基底侵蚀严重,地层主要为震旦系、寒武系和奥陶系,厚度超过6 km。除东部存在上古生界和中生界地层外,上覆地层为新生代沉积层,厚度小于3 km。建湖隆起两侧有南北倾斜的两个断裂体系,控制着中、新生代地层的发育和分布。在隆起中还存在一些次级断裂,控制着地热水的流动。热储层主要为震旦系和下古生界海相碳酸盐岩,地热钻孔显示热储岩溶裂缝发育,单井出水量大。

  • 表1 建湖隆起地层简表

  • Table1 Regional stratigraphy of Jianhu Uplift

  • 2.2 岩石物理参数

  • 对采集的25个岩样进行系统的物性测试,包括密度、孔隙度、导热系数和放射性产热率。此外,获得了前人研究的数据[18]。利用4个地质剖面对建湖隆起的岩性格架和地层分布进行分析。采用厚度加权调和平均法计算平均热导率,采用厚度加权算术平均法计算平均放射性产热率。计算结果见表2。

  • 2.3 地温场模拟

  • 恒温带下的浅部地壳地温场可认为处于稳定的热平衡状态。热传导是大陆地壳的主要换热机制。考虑地层的展布和非均质性采用二维热传导模拟热流从地壳深部向浅层地壳传导过程中的再分配,从而对建湖隆起深部地温场进行精确刻画。模拟中也考虑了放射性生热对地温场的影响。利用基于TOUGH2的Petrasim软件对4个地质剖面进行热传导模拟。TOUGH2是多孔和裂缝介质中热-流-力-化多物理场耦合的积分式有限差分法模拟软件[19-20]

  • 2.4 地热资源评价

  • 体积法广泛应用于水热型地热资源以及其他固体矿物的评价,也被推荐用于干热岩潜力评价。通过地壳地温场热传导模拟可获得3~10 km深度的地温分布,可据此对每1 km厚的岩层(即3~4、4~5、···、9~10 km)中储存的热资源量进行评价。1 km厚的岩层中储存的热资源量计算式为

  • H=ADρcTx-Tr
    (1)
  • 式中,H为热资源量,J;A为面积,m2D为储层厚度,m;ρ为岩石密度,kg/m3c为岩石比热容,J/(kg·℃);TX为所述储层的特征温度,℃;Tr为基准温度,即地热资源通过利用能降低到的温度,℃。在本研究中,根据USGS的建议,将Tr定为95℃,比年平均地表温度(15℃)高80℃[21]

  • 图2 过建湖隆起的4个地质剖面(剖面位置见图1)

  • Fig.2 Four geological sections through Jianhu Uplift (Location of sections shown in Fig.1)

  • 为评价干热岩储层的发电潜力,将热资源量用装机容量表示。假定热量会按热能效率(ηth)转化为电能,发电潜力为

  • P=ηthH×10-6/t
    (2)
  • 式中,P为每1 km厚干热岩储层的发电潜力,MWe;ηth为热能效率;t为电厂运行周期,s。

  • 热能效率(ηth)取决于储层温度。可由Tester等[22]提出的公式计算,

  • ηth=0.00052TX+0.032.
    (3)
  • 地热电厂稳定性较好,除设备维护及除垢等时间外,基本可连续运行,年运行时间可为300 d。式(2)给出了干热岩储层中的总热量,但要将全部热能提取出来在技术上不可能。因此需要确定一个可采系数R来评价可采热量,该系数取决于储层孔隙度和渗透率[23]。Beardsmore等[24]建议R取值为0.02~0.20,《地热资源评价方法及估算规程DZ/T 0331-2020》中推荐的R为0.02。可采资源量(PT)评价计算式为

  • PT=RP.
    (4)
  • 体积法中的岩石密度、岩石温度等地层参数具有一定的不确定性。可采用随机风险分析方法,如蒙特卡罗模拟,来估计可能的参数范围,并依据概率给出资源量的最可能值。

  • 表2 建湖隆起岩石物性参数

  • Table2 Physical parameters of rocks in Jianhu Uplift

  • 基于体积法的干热岩资源评价过程中热储体积(VX)、密度(ρ)、热储温度(TX)等参数的不确定性都可用概率密度函数来描述。研究中采用三角形概率函数描述参数的分布特征,用最小值、中间值和最大值3个特征值定义。

  • 以储层温度TX为例收集并分析二维热传导模拟得出的地层温度数据,显示其概率分布(图3)。图3中t1t2t3分别为热储层的最低、最可能和最高温度;t-为平均温度;σt为标准差。黑色区域表示储层温度落在该范围内的概率。

  • 本文中考虑的不确定性分析变量为热储温度TX和岩石密度ρ(表3)。TX的分布取决于地层中的热传导过程,由地温场模拟得出。使用@RISK软件进行蒙特卡洛计算,采样数为10000[25]

  • 图3 储层温度的三角概率分布

  • Fig.3 Triangular probability distribution of reservoir temperature

  • 表3 建湖隆起干热岩资源潜力评价参数

  • Table3 Parameters used for potential estimation of HDR resources in Jianhu Uplift

  • 3 结果讨论

  • 3.1 二维地温场模拟

  • 数值模型的几何模型参照图2所示4个地质剖面设置。第四纪沉积物较薄,在模型中不考虑。Z方向上划分为250 m的矩形网格,X方向上1000 m,厚度为1000 m。根据地层和岩体的分布,将岩石的物理参数分配给每个网格单元(图4)。

  • 模型中顶部边界为恒温带,设为定温度边界(16.5℃)。下边界定为定热流边界。根据区域热流数据[26]和之前的地温场分析,隆起区和坳陷区地表热流分别为88和70 mW/m2。根据前人对苏北盆地壳幔热结构的研究,放射性生热对10 km深度内热流的贡献在隆起区和坳陷区分别为16.6和15.1 mW/m2。据此,隆起区和坳陷区的底界地幔热流分别设定为71.4 和54.9 mW/m。

  • 图4 地温场网格剖分及模拟结果

  • Fig.4 Mesh generation and simulation results of geo-temperature field

  • 地层温度从顶部随深度线性递增,初始地温梯度设为3℃/100 m,地层压力等于静水压力。运行模型直至地温场达到稳态,可得到10 km深度内的地温场(图4)。热流更易通过高导热岩石传导,如花岗岩、碳酸盐等。因此由于震旦系和下古生代碳酸盐岩等高热导地层的隆升,热量集中在隆起区,温度比坳陷区更高。盖层厚度对地温分布也有影响。盖层很薄或没有盖层时,热量迅速散失,区域温度降低。

  • 计算结果与钻孔测温数据拟合良好(图5)。将得到的地温场数据导出,用于资源量评价。

  • 3.2 干热岩潜力评价

  • 模拟完成后对导出单元格的温度进行统计分析,以确定每1 km热储层温度的三角形概率分布特征。

  • 体积法中使用的其他物理参数为不同岩性的面积加权(表3)。由于建湖隆起3 km深度下的岩石孔隙度非常低,仅为0.50%~1.13%[27],因此忽略地下水中的热量。

  • 利用式(1)和(2)以及基于体积法的蒙特卡罗方法估算出每1 km厚层的热资源量H和发电潜力P,结果见表4。可采系数R取0.02,利用式(4)计算可采资源量PT(表5)。

  • 图5 井温计算值与实测值对比

  • Fig.5 Comparison between calculation value and measured values of well temperature logging

  • 表4 干热岩资源量评价

  • Table4 Potential estimation of HDR resources

  • 表5 干热岩可采资源量评价

  • Table5 Recoverable resources potential estimation of HDR resources

  • 结果表明,建湖隆起3~10 km深度内干热岩资源潜力巨大,平均值为2228.1±139.2 亿t标煤。如果开发2%的干热岩资源,可采资源量平均值为44.6亿t标煤,发电潜力为692769.9 MWe,约为江苏省2022年全年用电量(7399.5亿kW·h,合2.66 ×1018 J)的49倍;其中3~7 km深度内干热岩资源潜力平均值为952.8±225.8亿t标煤,可采资源量平均值为19.1亿t标煤,约占3~10 km深度内干热岩资源潜力的43%。从技术、经济可行性来看,其开发的可行性更高。

  • 3.3 不确定性分析

  • HDR地热能资源评价与传统热液资源评价存在差异,主要原因是数据缺乏,不确定性增加。经过实际数据验证的数值模拟方法能够提供对研究区域地质参数的整体认识,并获得地热潜力评价所需参数[28]。因此本文中采用热传导模拟作为表征受地质剖面约束的地温分布的工具。

  • 为了考虑评价参数的不确定性,合理评估HDR潜力,将体积法与蒙特卡罗模拟相结合,对体积法进行改进。图6为利用蒙特卡罗模拟估算的可采资源量,置信区间为90.0 %时可采资源量折合发电潜力为 542631.4~874713.6 MWe。这表明地质参数的选择会导致评价结果差距极大。因此不同EGS项目之间对比时应仔细分析参数的选择方法并进行不确定性分析。

  • 图6 可采资源量的不确定性分析

  • Fig.6 Uncertainty analysis of recoverable resources potential

  • 4 结论

  • (1)苏北盆地建湖隆起3~10 km埋深的干热岩可采资源量平均值为44.6亿t标煤,发电潜力为692769.9 MWe,约为江苏省2022年全年用电量的49倍。

  • (2)干热岩资源评价时由于深部地质数据的缺乏,导致评价结果的不确定性增加。经过地质数据验证的数值模拟能够提供对研究区地质参数的整体把握,是干热岩潜力评价的有力工具。

  • (3)位于中国东部的沉积盆地处于高热流值背景下,具有相似的地热地质条件,干热岩资源潜力巨大。随着高温钻井、岩石压裂等技术的改进,EGS项目最终将经济上可行,以满足区域内各大城市的巨量能源需求。

  • 参考文献

    • [1] KONG Y,PANG Z,SHAO H,et al.Recent studies on hydrothermal systems in China:a review[J].Geothermal Energy,2014,19(2):2-19.

    • [2] BERTANI R.Geothermal power generation in the world 2010-2014 update report[J].Geothermics,2016,60:31-43.

    • [3] 许天福,袁益龙,姜振蛟,等.干热岩资源和增强型地热工程:国际经验和我国展望[J].吉林大学学报(地球科学版),2016,46(4):1139-1152.XU Tianfu,YUAN Yilong,JIANG Zhenjiao,et al.Hotdry rock and enhanced geothermal engineering:international experience and China prospect[J].Journal of Jilin University(Earth Science Edition),2016,46(4):1139-1152.

    • [4] OLASOLO P,JUÁREZ M C,MORÁLES M P,et al.Enhanced geothermal systems(EGS):a review[J].Renewable and Sustainable Energy Reviews,2016,56:133-144.

    • [5] LU S M.A global review of enhanced geothermal system(EGS)[J].Renewable and Sustainable Energy Reviews,2018,81:2902-2921.

    • [6] 汪集旸,胡圣标,庞忠和,等.中国大陆干热岩地热资源潜力评估[J].科技导报,2012,30(32):25-31.WANG Jiyang,HU Shengbiao,PANG Zhonghe,et al.Estimate of geothermal resources potential for hot dry rock in thecontinental area of China[J].Science & Technology Review,2012,30(32):25-31.

    • [7] 庞忠和,罗霁,程远志,等.中国深层地热能开采的地质条件评价[J].地学前缘,2020,27(1):134-151.PANG Zhonghe,LUO Ji,CHENG Yuanzhi,et al.Evaluation of geological conditions for the development of deep geothermal energy in China[J].Earth Science Frontiers,2020,27(1):134-15.

    • [8] QIU N S.Special collection:advances of exploration and utilization technology of geothermal resources in China[J].Energy Exploration & Exploitation,2019,37(2):605-606.

    • [9] ZHANG X X,ZHANG D J,ZHOU Y,et al.Energy risks zoning and demand forecasting in Jiangsu province[J].Energy Procedia,2011,5:813-817.

    • [10] 徐立.江苏地区地热资源综合利用研究[D].南京:南京大学,2014.XU Li.The research of comprehensive utilization of geothermal resources in Jiangsu area[D].Nanjing:Nanjing University,2014.

    • [11] 刘德民,张根袁,关俊朋,等.苏北盆地干热岩地热资源前景分析[J].地学前缘,2020,27(1):48-54.LIU Demin,ZHANG Genyuan,GUAN Junpeng,et al.Analysis of geothermal resources potential for hot dry rock in the Subei Basin[J].Earth Science Frontiers,2020,27(1):48-54.

    • [12] ZHUG L,ZHANG L Y,DENG Z H,et al.Three-dimensional geological modeling and resource estimation of hot dry rock in the Gonghe Basin,Qinghai province[J].Energies,2023,16(16):5871.

    • [13] 孙明行,王瑞湖,管彦武,等.广西陆域干热型地热资源潜力估算[J].吉林大学学报(地球科学版),2022,52(4):1302-1313.SUN Minghang,WANG Ruihu,GUNA Yanwu,et al.Estimation of hot dry geothermal resources in Guangxi[J].Journal of Jilin University(Earth Science Edition),2022,52(4):1302-1313.

    • [14] HOWELL L,BROWN C S,EGAN S S.Deep geothermal energy in northern England:insights from 3D finite difference temperature modelling[J].Computers & Geosciences,2021,147:104661.

    • [15] BROWN C S.Regional geothermal resource assessment of hot dry rocks in Northern England using 3D geological and thermal models[J].Geothermics,2022,105:102503.

    • [16] BREEDE K,DZEBISASHYILI K,LIU X,et al.A systematic review of enhanced(or engineered)geothermal systems:past,present and future[J].Geothermal Energy,2013,1(1):4.

    • [17] WANG Zhuting,JIANG Guangzheng,ZHANG Chao,et al.Estimating geothermal resources in Bohai Bay Basin,Eastern China,using Monte Carlo simulation[J].Environmental Earth Sciences,2019,78:355.

    • [18] 徐立,王良书,杨谦.江苏干热岩地热资源潜力估算[J].高校地质学报,2014,20(3):464-469.XU Li,WANG Liangshu,YANG Qian.An estimation of hot-dry-rock(HDR)resources in Jiangsu province[J].Geological Journal of China Universities,2014,20(3):464-469.

    • [19] 段忠丰,李福来,巩亮,等.基于水热耦合模拟的油气区地热开发井网布局[J].天然气工业,2020,40(10):156-162.DUAN Zhongfeng,LI Fulai,GONG Liang,et al.Geothermal development well spacing patterns based on hydrothermal coupled modeling in oil-gas bearing areas[J].Natural Gas Industry,2020,40(10):156-162.

    • [20] PURESS K,OLDENBURG C,MORIDIS G.Tough2 user’s guide,version 2.0[R].LBNL-43134,1999.

    • [21] WILLIAMS C F,REED M J,MARINER R H.A review of methods applied by the U.S.Geological Survey in the assessment of identified geothermal resources:USGS open file report 2008-1296 [R/OL].(2008)[2023-06-17].https://doi.org/10.3133/ofr20081296.

    • [22] TESTER W J,ANDERSON B J,BATCHELOR A S,et al.The future of geothermal energy:impact of enhanced geothermal systems(EGS)on the United States in the 21st century:final report to the US DOE geothermal technologies program massachusetts institute of technology,Cambridge,2006[R/OL].(2006)[2023-06-17].https://www1.eere.energy.gov/geothermal/pdfs/egs_toc_front.pdf.

    • [23] CALCAGNO P,BAUJARD C,GUILLOU-FROTTIER L,et al.Estimation of the deep geothermal potential within the tertiary Limagne Basin(French Massif Central):an integrated 3D geological and thermal approach[J].Geothermics,2014,51:496-508.

    • [24] BEARDSMORE G R,RYBACH L,BLACKWELL D,et al.A protocol for estimating and mapping global EGS potential[R].Sacramento:Transactions-Geothermal Resources Council,2010.

    • [25] PALISADE Corp.@risk,risk analysis and simulation add-in for Microsoft Excel or Lotus 1-2-3,Windows version,user’s guide[M].New York:Palisade Corp,1995:1-4.

    • [26] 姜光政,高堋,饶松,等.中国大陆地区大地热流数据汇编(第四版)[J].地球物理学报,2016,59(8):2892-2910.JIANG Guangzheng,GAO Peng,RAO Song,et al.Compilation of heat flow data in the continentalarea of China(4thedition)[J].Chinese Journl of Geophysics,2016,59(8):2892-2910.

    • [27] WAN Z J,ZHAOY S,KANG J R.Forecast and evaluation of hot dry rock geothermal resource in China[J].Renewable Energy,2005,30:1831-1846.

    • [28] GONZÁLEZ-GARCIA J,HAUSER J,ANNETTS D,et al.Nevado del Ruiz volcano(Colombia):a 3D model combining geological and geophysical information[C].Melbourne:Proceedings World Geothermal Congress,2015.

  • 参考文献

    • [1] KONG Y,PANG Z,SHAO H,et al.Recent studies on hydrothermal systems in China:a review[J].Geothermal Energy,2014,19(2):2-19.

    • [2] BERTANI R.Geothermal power generation in the world 2010-2014 update report[J].Geothermics,2016,60:31-43.

    • [3] 许天福,袁益龙,姜振蛟,等.干热岩资源和增强型地热工程:国际经验和我国展望[J].吉林大学学报(地球科学版),2016,46(4):1139-1152.XU Tianfu,YUAN Yilong,JIANG Zhenjiao,et al.Hotdry rock and enhanced geothermal engineering:international experience and China prospect[J].Journal of Jilin University(Earth Science Edition),2016,46(4):1139-1152.

    • [4] OLASOLO P,JUÁREZ M C,MORÁLES M P,et al.Enhanced geothermal systems(EGS):a review[J].Renewable and Sustainable Energy Reviews,2016,56:133-144.

    • [5] LU S M.A global review of enhanced geothermal system(EGS)[J].Renewable and Sustainable Energy Reviews,2018,81:2902-2921.

    • [6] 汪集旸,胡圣标,庞忠和,等.中国大陆干热岩地热资源潜力评估[J].科技导报,2012,30(32):25-31.WANG Jiyang,HU Shengbiao,PANG Zhonghe,et al.Estimate of geothermal resources potential for hot dry rock in thecontinental area of China[J].Science & Technology Review,2012,30(32):25-31.

    • [7] 庞忠和,罗霁,程远志,等.中国深层地热能开采的地质条件评价[J].地学前缘,2020,27(1):134-151.PANG Zhonghe,LUO Ji,CHENG Yuanzhi,et al.Evaluation of geological conditions for the development of deep geothermal energy in China[J].Earth Science Frontiers,2020,27(1):134-15.

    • [8] QIU N S.Special collection:advances of exploration and utilization technology of geothermal resources in China[J].Energy Exploration & Exploitation,2019,37(2):605-606.

    • [9] ZHANG X X,ZHANG D J,ZHOU Y,et al.Energy risks zoning and demand forecasting in Jiangsu province[J].Energy Procedia,2011,5:813-817.

    • [10] 徐立.江苏地区地热资源综合利用研究[D].南京:南京大学,2014.XU Li.The research of comprehensive utilization of geothermal resources in Jiangsu area[D].Nanjing:Nanjing University,2014.

    • [11] 刘德民,张根袁,关俊朋,等.苏北盆地干热岩地热资源前景分析[J].地学前缘,2020,27(1):48-54.LIU Demin,ZHANG Genyuan,GUAN Junpeng,et al.Analysis of geothermal resources potential for hot dry rock in the Subei Basin[J].Earth Science Frontiers,2020,27(1):48-54.

    • [12] ZHUG L,ZHANG L Y,DENG Z H,et al.Three-dimensional geological modeling and resource estimation of hot dry rock in the Gonghe Basin,Qinghai province[J].Energies,2023,16(16):5871.

    • [13] 孙明行,王瑞湖,管彦武,等.广西陆域干热型地热资源潜力估算[J].吉林大学学报(地球科学版),2022,52(4):1302-1313.SUN Minghang,WANG Ruihu,GUNA Yanwu,et al.Estimation of hot dry geothermal resources in Guangxi[J].Journal of Jilin University(Earth Science Edition),2022,52(4):1302-1313.

    • [14] HOWELL L,BROWN C S,EGAN S S.Deep geothermal energy in northern England:insights from 3D finite difference temperature modelling[J].Computers & Geosciences,2021,147:104661.

    • [15] BROWN C S.Regional geothermal resource assessment of hot dry rocks in Northern England using 3D geological and thermal models[J].Geothermics,2022,105:102503.

    • [16] BREEDE K,DZEBISASHYILI K,LIU X,et al.A systematic review of enhanced(or engineered)geothermal systems:past,present and future[J].Geothermal Energy,2013,1(1):4.

    • [17] WANG Zhuting,JIANG Guangzheng,ZHANG Chao,et al.Estimating geothermal resources in Bohai Bay Basin,Eastern China,using Monte Carlo simulation[J].Environmental Earth Sciences,2019,78:355.

    • [18] 徐立,王良书,杨谦.江苏干热岩地热资源潜力估算[J].高校地质学报,2014,20(3):464-469.XU Li,WANG Liangshu,YANG Qian.An estimation of hot-dry-rock(HDR)resources in Jiangsu province[J].Geological Journal of China Universities,2014,20(3):464-469.

    • [19] 段忠丰,李福来,巩亮,等.基于水热耦合模拟的油气区地热开发井网布局[J].天然气工业,2020,40(10):156-162.DUAN Zhongfeng,LI Fulai,GONG Liang,et al.Geothermal development well spacing patterns based on hydrothermal coupled modeling in oil-gas bearing areas[J].Natural Gas Industry,2020,40(10):156-162.

    • [20] PURESS K,OLDENBURG C,MORIDIS G.Tough2 user’s guide,version 2.0[R].LBNL-43134,1999.

    • [21] WILLIAMS C F,REED M J,MARINER R H.A review of methods applied by the U.S.Geological Survey in the assessment of identified geothermal resources:USGS open file report 2008-1296 [R/OL].(2008)[2023-06-17].https://doi.org/10.3133/ofr20081296.

    • [22] TESTER W J,ANDERSON B J,BATCHELOR A S,et al.The future of geothermal energy:impact of enhanced geothermal systems(EGS)on the United States in the 21st century:final report to the US DOE geothermal technologies program massachusetts institute of technology,Cambridge,2006[R/OL].(2006)[2023-06-17].https://www1.eere.energy.gov/geothermal/pdfs/egs_toc_front.pdf.

    • [23] CALCAGNO P,BAUJARD C,GUILLOU-FROTTIER L,et al.Estimation of the deep geothermal potential within the tertiary Limagne Basin(French Massif Central):an integrated 3D geological and thermal approach[J].Geothermics,2014,51:496-508.

    • [24] BEARDSMORE G R,RYBACH L,BLACKWELL D,et al.A protocol for estimating and mapping global EGS potential[R].Sacramento:Transactions-Geothermal Resources Council,2010.

    • [25] PALISADE Corp.@risk,risk analysis and simulation add-in for Microsoft Excel or Lotus 1-2-3,Windows version,user’s guide[M].New York:Palisade Corp,1995:1-4.

    • [26] 姜光政,高堋,饶松,等.中国大陆地区大地热流数据汇编(第四版)[J].地球物理学报,2016,59(8):2892-2910.JIANG Guangzheng,GAO Peng,RAO Song,et al.Compilation of heat flow data in the continentalarea of China(4thedition)[J].Chinese Journl of Geophysics,2016,59(8):2892-2910.

    • [27] WAN Z J,ZHAOY S,KANG J R.Forecast and evaluation of hot dry rock geothermal resource in China[J].Renewable Energy,2005,30:1831-1846.

    • [28] GONZÁLEZ-GARCIA J,HAUSER J,ANNETTS D,et al.Nevado del Ruiz volcano(Colombia):a 3D model combining geological and geophysical information[C].Melbourne:Proceedings World Geothermal Congress,2015.

  • 版权所有 中国石油大学学报(自然科学版)编辑部 Copyright©2008 All Rights Reserved
    主管单位:中华人民共和国教育部 主办单位:中国石油大学(华东)
    地址: 青岛市黄岛区长江西路66号中国石油大学期刊社 邮编:266580 电话:0532-86983553 E-mail: journal@upc.edu.cn
    本系统由:北京勤云科技发展有限公司设计