en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

冯涛(1978-),男,副教授,博士,研究方向为材料的表面改性与新材料焊接。E-mail:ft_210750@163.com。

通讯作者:

王炳英(1972-),女,教授,博士,研究方向为焊接结构环境敏感断裂。E-mail:tdwby2004@126.com。

中图分类号:TG401

文献标识码:A

文章编号:1673-5005(2022)02-0176-07

DOI:10.3969/j.issn.1673-5005.2022.02.019

参考文献 1
董长银,周博,宋洋,等.天然气水合物储层防砂介质挡砂模拟试验与评价方法[J].中国石油大学学报(自然科学版),2020,44(5):79-88.DONG Changyin,ZHOU Bo,SONG Yang,et al.Sandretaining simulation experiment of screen media for formation sand in natural gas hydrate reservoirs and evaluation method[J].Journal of China University of Petroleum(Edition of Natural Science),2020,44(5):79-88.
参考文献 2
廖华林,董林,牛继磊,等.砾石充填条件下筛管堵塞与冲蚀特性试验[J].中国石油大学学报(自然科学版),2019,43(3):90-97.LIAO Hualin,DONG Lin,NIU Jilei,et al.An experimental study on plugging and erosion failures of sand screen in grave-packing conditions[J].Journal of China University of Petroleum(Edition of Natural Science),2019,43(3):90-97.
参考文献 3
齐宁,刘帅,李柏杨,等.可脱离式充填筛管用降解剂的研制及降解机制[J].中国石油大学学报(自然科学版),2016,40(6):87-93.QI Ning,LIU Shuai,LI Boyang,et al.Design and performance of degradation agent for detachable filling screen tubes in oilfield sand control[J].Journal of China University of Petroleum(Edition of Natural Science)2016,40(6):87-93.
参考文献 4
董长银,贾碧霞,刘春苗,等.机械防砂筛管挡砂介质堵塞机制及堵塞规律试验[J].中国石油大学学报(自然科学版),2011,35(5):82-88.DONG Changyin,JIA Bixia,LIU Chunmiao,et al.Blocking mechanism and blocking laws experiments of sand retention media in mechanical screen[J].Journal of China University of Petroleum(Edition of Natural Science),2011,35(5):82-88.
参考文献 5
BAO Z,NIU Z,JIAO K.Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells [J].Applied Energy,2020,116011(280):1-11.
参考文献 6
NOWACKI J,MORANIEC K.Welding of metallic AlSi foams and AlSi-SiC composite foams [J].Archives of Civil & Mechanical Engineering,2015,15(4):940-950.
参考文献 7
HANGAI Y,KAMADA H,UTSUNOMIYA T,et al.Aluminum alloy foam core sandwich panels fabricated from die casting aluminum alloy by friction stir welding route [J].Journal of Materials Processing Technology,2014,214(9):1928-1934.
参考文献 8
曹海杨,张敏,陈长军,等.泡沫铝材料的 CO2 气体保护焊接工艺及性能研究 [J].表面工程与再制造,2016,16(3):16-19.CAO Haiyang,ZHANG Min,CHEN Changjun,et al.Study on CO2 gas shielded welding technology and properties of aluminum foam[J].Surface Engineering & Remanufacturing,2016,16(3):16-19.
参考文献 9
HUANG H,SHANGYU H,YONGCHAO Y,et al.Microstructure and mechanical properties of Cu joints soldered with a Sn-based composite solder,reinforced by metal foam [J].Journal of Alloys and Compounds,2020,845:1-7.
参考文献 10
KARAN S V,SANJAY K P,MONDALDP.Compressive deformation behavior of closed cell LM-13 aluminum alloy foam using finite element analysis[J].2020,28(Pt 2):1073-1077.
参考文献 11
CHANGDAR A,CHAKRABORTY S S.Laser processing of metal foam-a review[J].Journal of Manufacturing Processes,2021,61:208-225.
参考文献 12
MARX J,RABIEI A.Study on the microstructure and compression of composite metal foam core sandwich panels[J].Metallurgical and Materials Transactions,2020,51(10):5187-5197.
目录contents

    摘要

    以厚度为 6 mm 的镍基泡沫金属为研究对象,采用 TIG 焊并选用 Inconel625 与 Inconel600 两种焊丝,探讨焊接工艺对焊缝成形、接头组织和性能的影响。 结果表明:在本试验条件下,选用 Inconel625 焊丝,焊接电流为 60 A,焊前预热 150 ℃ ,Y 形坡口和间断填丝的工艺时,所得到的焊接接头力学性能最优,抗拉强度可达 21. 37 MPa,约为母材的 96. 0%;接头断口以韧窝为主,且部分韧窝中存在以碳化物和非金属夹杂为主的第二相质点;焊缝表面为等轴晶, 焊缝中部为等轴晶和树枝晶,层道交界处为胞状晶和柱状晶,熔合区为胞状晶和胞状树枝晶,热影响区晶粒明显长大;焊缝区和熔合区主要由 γ-Ni 和 γ 固溶体构成。

    Abstract

    The foam nickel with the thickness of 6 mm was selected for study. The TIG welding was used with Inconel625 and Inconel600 welding wires. The effects of welding process on welding formation, joint microstructures and properties were investigated. The results indicate that, under the test condition, when the Inconel625 welding wire is selected, the welding current is 60 A, the preheating temperature is 150 ℃ , the Y-shaped groove and intermittent wire filling process are adopted, and the mechanical properties of the welded joint are the best. That is to say, the tensile strength can amount to 21. 37 MPa, which is about 96. 0% of the base metal. There are dimples on the surface and some dimples contain second phase particles mainly composed of carbides and nonmetallic inclusions. The welding joint surface is covered with equiaxial crystals, the middle part of the welding joint is equiaxed crystal and dendrite, the cellular crystals and columnar crystals are distributed in the junction of layers, and the cellular crystals and cellular dendrites are distributed in the fusion zone. The grains in the heat affected zone grow obviously. The main phase of the welding zone and fusion zone are the γ-Ni and γ solid solution.

  • 目前机械防砂是油田常用的防砂方法,常见的机械防砂方法有滤砂管、绕丝筛管、割缝筛管、管外砾石充填筛管、可膨胀筛管等,这些机械防砂方法各有优势,但都难以应对油井中后期出砂较严重的防砂任务[1-4]。目前有一种新型镍基泡沫金属筛管,其挡砂层由高孔隙率、低孔径的镍基泡沫金属板卷制焊接而成。与传统机械防砂方法相比,镍基泡沫金属筛管具有更好的防砂效果。泡沫金属是金属基体中分布着无数孔洞的金属材料,因其独特的结构而兼有结构材料和功能材料的特点。泡沫镍是通过化工、机械等手段对高纯度金属镍作进一步深加工的产品,因其具有孔隙率高、比表面积大、质量均匀等特点,被广泛应用于超级电容器、减震器、过滤器、消防、化工催化器、热交换器、环保废水治理等领域[5-7]。可靠的连接是泡沫金属实现大规模生产和广泛工程应用的基础。焊接作为现代制造领域广泛应用的一种重要连接技术, 可通过实现原子级连接获得可靠的接头。而泡沫金属因其结构的特殊性,采用常规焊接方法难以实现可靠的连接。目前关于泡沫金属焊接性的研究主要集中在泡沫铝领域,而关于镍基泡沫金属焊接的研究报道极少,因此迫切需要制定出可以获得优质焊接接头的镍基泡沫金属焊接工艺[8-12]。笔者以厚度为6mm的镍基泡沫金属为研究对象,采用TIG焊并选用Inconel625与Inconel600两种焊丝,探讨焊接工艺对焊缝成形、接头组织和性能的影响。

  • 1 试验材料及方法

  • 所用母材为通过电镀方法制备的镍基泡沫金属板,厚度为6mm。该材料为三维立体空隙结构,孔隙率约为60%,其形貌见图1。所用镍基泡沫金属为纯Ni,选用Inconel625和Inconel600两种焊丝进行填充,焊丝直径为2mm,所用的焊接工艺参数见表1。采用多层多道焊,正面焊2道,背面焊1道。焊后利用光学显微镜(OM)和扫描电子显微镜(SEM)对接头形貌进行分析,利用X射线能谱分析仪(EDS)和X射线衍射仪(XRD)对接头的物相进行分析。

  • 图1 母材形貌

  • Fig.1 Microstructure of base metal

  • 表1 镍基泡沫金属TIG焊接工艺参数

  • Table1 TIG process parameters of nickel based foam metal

  • 2 试验结果

  • 2.1 焊后接头性能及组织分析

  • 表2 为焊接工艺对接头性能的影响,图2为焊后接头的宏观形貌。由表2可见,预热150℃ 试样的抗拉强度高于室温焊接试样的抗拉强度,Y形坡口试样的抗拉强度高于X形坡口试样,采用Inconel625焊丝的试样整体抗拉性能高于Inconel600焊丝。由图2可见,若焊接参数选择不当,可能导致未焊透等缺陷。

  • 表2 焊接工艺对镍基泡沫金属接头性能的影响

  • Table2 Effect of welding process on properties of nickel based foam metal joints

  • 图2 焊接接头截面宏观形貌

  • Fig.2 Welding joints cross section

  • 选取抗拉强度最高的1#和抗拉强度最低的8# 试样以及母材(图3),分析其断口形貌,并对断口中的第二相质点进行ESD分析。由图3可见,1#试样和母材的断口上均分布有韧窝,部分韧窝中有第二相质点,但1#试样断口中的第二相数量较母材多且尺寸大;8#试样的断口呈冰糖状,为沿晶脆性断裂, 同时断口处也存在第二相质点。 EDS分析表明,第二相质点中C、O等元素含量较高,由此推测第二相质点为碳化物或其他非金属夹杂物。

  • 图3 拉伸断口形貌及第二相EDS分析

  • Fig.3 Tensile fracture SEM images and EDS analysis of welded joints

  • 图4 为1#、8#试样和母材的拉伸曲线。由图4可见,1#试样和母材拉伸时,在断裂之前曲线上出现了多个屈服平台。泡沫材料结构上的不均匀性导致拉伸时各部分受力不均,出现应力集中区。当应力达到一定数值时,泡沫金属中的应力集中区域便会出现屈服现象,受柯氏气团对位错的钉扎作用使抗拉强度增大。而8#试样表现为脆性断裂,这表明镍基泡沫金属TIG焊接接头的性能受焊接工艺影响较大。

  • 图5、6分别为1#和5#试样接头显微组织。由图5可见,使用Inconel625焊丝时,焊缝热影响区为粗大的等轴晶,熔合区母材侧为胞状晶,焊缝侧为树枝晶,焊缝表面为均匀细小的等轴晶,焊缝中部为胞状树枝晶,焊缝层道间由下至上为等轴晶→胞状晶→柱状晶。由图6可见,使用Inconel600焊丝时, 焊缝表面为均匀细小的等轴晶,焊缝中部主要为等轴晶和树枝晶,焊缝层道间组织依次为胞状树枝晶→胞状晶→等轴晶。而熔合区由靠近母材处至焊缝内部,组织变化表现为平面晶→胞状晶→树枝晶。

  • 图4 拉伸应力应变曲线

  • Fig.4 Tensile stress-strain curve

  • 图5 1#试样焊接接头显微组织

  • Fig.5 Microstructure of welded joint of sample 1

  • 2.2 焊接接头物相分析

  • 1#试样焊缝区和熔合区XRD衍射图谱见图7, SEM与析出相EDS测试结果见图8。结果表明,焊缝区和熔合区主要为 γ-Ni和 γ 固溶体 (Cr2Fe6.7Mo0.1Ni1.3 Si 0.3),且熔合区以 γ-Ni相为主, 焊缝区以 γ 固溶体为主。

  • 5#试样焊缝区和熔合区XRD衍射图谱见图9, 焊缝区SEM和析出相EDS测试结果见图10。由图9可见, 熔合区主要为 γ-Ni和 γ 固溶体 (FeCr0.29Ni 0.16C0.06);熔合区以 γ-Ni相为主,焊缝区以 γ 固溶体为主。由图10可见,5#试样晶粒内部与晶界上分布有白色析出物,晶界处析出物呈不规则片状,而晶粒内部的析出物呈球形。图10中A、B区域ESD扫描结果表明,该区域Nb、Ti的含量均高于焊丝,该区域晶界处存在Nb、Ti元素富集的现象。

  • 图6 5#试样焊接接头显微组织

  • Fig.6 Microstructure of welded joint of sample 5

  • 图7 1#试样焊接接头XRD衍射图谱

  • Fig.7 XRD diffraction pattern of 1# sample welding joint

  • 图8 1#试样焊缝区SEM及EDS

  • Fig.8 SEM and EDS of 1# sample welded area

  • 图9 5#试样焊接接头XRD衍射图谱

  • Fig.9 XRD diffraction pattern of 5# sample welding joint

  • 图10 5#试样焊缝区SEM及EDS

  • Fig.10 SEM and EDS of 5# sample welded area

  • 3 结论

  • (1)采用TIG焊接6mm厚镍基泡沫金属板时, 焊接工艺对焊缝成形性有较大影响。 当选用Inconel625焊丝,焊接电流为60A,焊前预热为150℃,Y形坡口,间断填丝的工艺时,所得到的焊接接头力学性能最优,抗拉强度可达21.37MPa,约为母材的96.0%。

  • (2) 使用Inconel625和Inconel600焊丝得到的接头组织类似。焊缝表面为均匀细小的等轴晶,焊缝中部组织主要为等轴晶和树枝晶。在焊层交界处,由下层焊道至上层焊道组织依次表现为胞状树枝晶→胞状晶→等轴晶;而在熔合区由靠近母材处至焊缝内部,组织变化表现为平面晶→胞状晶→树枝晶。

  • (3)工艺参数选择合适时,断口主要为韧窝;而工艺选择不合适时,断口形貌为沿晶脆性断裂,且断口表面存在以碳化物和其他非金属夹杂物为主的第二相质点。采用Inconel625与Inconel600两种焊丝得到的焊接接头熔合区的主要物相为 γ 相,使用Inconel625焊丝时,焊缝区以Cr2Fe6.7Mo0.1Ni1.3 Si 0.3 为主, 使用Inconel600焊丝时, 焊缝区以FeCr0.29Ni 0.16C0.06 为主。

  • 参考文献

    • [1] 董长银,周博,宋洋,等.天然气水合物储层防砂介质挡砂模拟试验与评价方法[J].中国石油大学学报(自然科学版),2020,44(5):79-88.DONG Changyin,ZHOU Bo,SONG Yang,et al.Sandretaining simulation experiment of screen media for formation sand in natural gas hydrate reservoirs and evaluation method[J].Journal of China University of Petroleum(Edition of Natural Science),2020,44(5):79-88.

    • [2] 廖华林,董林,牛继磊,等.砾石充填条件下筛管堵塞与冲蚀特性试验[J].中国石油大学学报(自然科学版),2019,43(3):90-97.LIAO Hualin,DONG Lin,NIU Jilei,et al.An experimental study on plugging and erosion failures of sand screen in grave-packing conditions[J].Journal of China University of Petroleum(Edition of Natural Science),2019,43(3):90-97.

    • [3] 齐宁,刘帅,李柏杨,等.可脱离式充填筛管用降解剂的研制及降解机制[J].中国石油大学学报(自然科学版),2016,40(6):87-93.QI Ning,LIU Shuai,LI Boyang,et al.Design and performance of degradation agent for detachable filling screen tubes in oilfield sand control[J].Journal of China University of Petroleum(Edition of Natural Science)2016,40(6):87-93.

    • [4] 董长银,贾碧霞,刘春苗,等.机械防砂筛管挡砂介质堵塞机制及堵塞规律试验[J].中国石油大学学报(自然科学版),2011,35(5):82-88.DONG Changyin,JIA Bixia,LIU Chunmiao,et al.Blocking mechanism and blocking laws experiments of sand retention media in mechanical screen[J].Journal of China University of Petroleum(Edition of Natural Science),2011,35(5):82-88.

    • [5] BAO Z,NIU Z,JIAO K.Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells [J].Applied Energy,2020,116011(280):1-11.

    • [6] NOWACKI J,MORANIEC K.Welding of metallic AlSi foams and AlSi-SiC composite foams [J].Archives of Civil & Mechanical Engineering,2015,15(4):940-950.

    • [7] HANGAI Y,KAMADA H,UTSUNOMIYA T,et al.Aluminum alloy foam core sandwich panels fabricated from die casting aluminum alloy by friction stir welding route [J].Journal of Materials Processing Technology,2014,214(9):1928-1934.

    • [8] 曹海杨,张敏,陈长军,等.泡沫铝材料的 CO2 气体保护焊接工艺及性能研究 [J].表面工程与再制造,2016,16(3):16-19.CAO Haiyang,ZHANG Min,CHEN Changjun,et al.Study on CO2 gas shielded welding technology and properties of aluminum foam[J].Surface Engineering & Remanufacturing,2016,16(3):16-19.

    • [9] HUANG H,SHANGYU H,YONGCHAO Y,et al.Microstructure and mechanical properties of Cu joints soldered with a Sn-based composite solder,reinforced by metal foam [J].Journal of Alloys and Compounds,2020,845:1-7.

    • [10] KARAN S V,SANJAY K P,MONDALDP.Compressive deformation behavior of closed cell LM-13 aluminum alloy foam using finite element analysis[J].2020,28(Pt 2):1073-1077.

    • [11] CHANGDAR A,CHAKRABORTY S S.Laser processing of metal foam-a review[J].Journal of Manufacturing Processes,2021,61:208-225.

    • [12] MARX J,RABIEI A.Study on the microstructure and compression of composite metal foam core sandwich panels[J].Metallurgical and Materials Transactions,2020,51(10):5187-5197.

  • 参考文献

    • [1] 董长银,周博,宋洋,等.天然气水合物储层防砂介质挡砂模拟试验与评价方法[J].中国石油大学学报(自然科学版),2020,44(5):79-88.DONG Changyin,ZHOU Bo,SONG Yang,et al.Sandretaining simulation experiment of screen media for formation sand in natural gas hydrate reservoirs and evaluation method[J].Journal of China University of Petroleum(Edition of Natural Science),2020,44(5):79-88.

    • [2] 廖华林,董林,牛继磊,等.砾石充填条件下筛管堵塞与冲蚀特性试验[J].中国石油大学学报(自然科学版),2019,43(3):90-97.LIAO Hualin,DONG Lin,NIU Jilei,et al.An experimental study on plugging and erosion failures of sand screen in grave-packing conditions[J].Journal of China University of Petroleum(Edition of Natural Science),2019,43(3):90-97.

    • [3] 齐宁,刘帅,李柏杨,等.可脱离式充填筛管用降解剂的研制及降解机制[J].中国石油大学学报(自然科学版),2016,40(6):87-93.QI Ning,LIU Shuai,LI Boyang,et al.Design and performance of degradation agent for detachable filling screen tubes in oilfield sand control[J].Journal of China University of Petroleum(Edition of Natural Science)2016,40(6):87-93.

    • [4] 董长银,贾碧霞,刘春苗,等.机械防砂筛管挡砂介质堵塞机制及堵塞规律试验[J].中国石油大学学报(自然科学版),2011,35(5):82-88.DONG Changyin,JIA Bixia,LIU Chunmiao,et al.Blocking mechanism and blocking laws experiments of sand retention media in mechanical screen[J].Journal of China University of Petroleum(Edition of Natural Science),2011,35(5):82-88.

    • [5] BAO Z,NIU Z,JIAO K.Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells [J].Applied Energy,2020,116011(280):1-11.

    • [6] NOWACKI J,MORANIEC K.Welding of metallic AlSi foams and AlSi-SiC composite foams [J].Archives of Civil & Mechanical Engineering,2015,15(4):940-950.

    • [7] HANGAI Y,KAMADA H,UTSUNOMIYA T,et al.Aluminum alloy foam core sandwich panels fabricated from die casting aluminum alloy by friction stir welding route [J].Journal of Materials Processing Technology,2014,214(9):1928-1934.

    • [8] 曹海杨,张敏,陈长军,等.泡沫铝材料的 CO2 气体保护焊接工艺及性能研究 [J].表面工程与再制造,2016,16(3):16-19.CAO Haiyang,ZHANG Min,CHEN Changjun,et al.Study on CO2 gas shielded welding technology and properties of aluminum foam[J].Surface Engineering & Remanufacturing,2016,16(3):16-19.

    • [9] HUANG H,SHANGYU H,YONGCHAO Y,et al.Microstructure and mechanical properties of Cu joints soldered with a Sn-based composite solder,reinforced by metal foam [J].Journal of Alloys and Compounds,2020,845:1-7.

    • [10] KARAN S V,SANJAY K P,MONDALDP.Compressive deformation behavior of closed cell LM-13 aluminum alloy foam using finite element analysis[J].2020,28(Pt 2):1073-1077.

    • [11] CHANGDAR A,CHAKRABORTY S S.Laser processing of metal foam-a review[J].Journal of Manufacturing Processes,2021,61:208-225.

    • [12] MARX J,RABIEI A.Study on the microstructure and compression of composite metal foam core sandwich panels[J].Metallurgical and Materials Transactions,2020,51(10):5187-5197.

  • 版权所有 中国石油大学学报(自然科学版)编辑部 Copyright©2008 All Rights Reserved
    主管单位:中华人民共和国教育部 主办单位:中国石油大学(华东)
    地址: 青岛市黄岛区长江西路66号中国石油大学期刊社 邮编:266580 电话:0532-86983553 E-mail: journal@upc.edu.cn
    本系统由:北京勤云科技发展有限公司设计