en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王刚(1990-),男,博士研究生,研究方向为海洋油气钻采工程。E-mail:wanggang2119@163.com。

通讯作者:

刘刚(1960-),男,教授,博士,博士生导师,研究方向为油气井力学、信息与控制。E-mail:lg87323@126.com。

中图分类号:TE52

文献标识码:A

文章编号:1673-5005(2022)02-0113-08

DOI:10.3969/j.issn.1673-5005.2022.02.011

参考文献 1
王宁,孙宝江,王志远,等.考虑钻头进尺影响的深水钻井水力参数优选[J].中国海上油气,2015,27(3):126-132.WANG Ning,SUN Baojiang,WANG Zhiyuan,et al.Optimization of hydraulic parameters for deep water drilling considering the effect of drilling footage [J].China Offshore Oil and Gas,2015,27(3):126-132.
参考文献 2
何新霞,闫加亮,徐长航.海底钻井液举升钻井系统监测与控制[J].中国石油大学学报(自然科学版),2014,38(3):129-134.HE Xinxia,YAN Jialiang,XU Changhang.Monitoring and control for subsea mudlift drilling system[J].Journal of China University of Petroleum(Edition of Natural Science),2014,38(3):129-134.
参考文献 3
杨宏伟,李军,柳贡慧,等.多梯度钻井动态控制参数优化设计[J].中国石油大学学报(自然科学版),2019,43(3):73-79.YANG Hongwei,LI Jun,LIU Gonghui,et al.Optimization design of dynamic control parameters for multi-gradient drilling[J].Journal of China University of Petroleum(Edition of Natural Science),2019,43(3):73-79.
参考文献 4
杨进,曹式敬.深水石油钻井技术现状及发展趋势 [J].石油钻采工艺,2008,30(2):10-13.YANG Jin,CAO Shijing.Current situation and developing trend of petroleum drilling technologies in deepwater [J].Oil Drilling & Production Technology,2008,30(2):10-13.
参考文献 5
陈国明,刘秀全,畅元江,等.深水钻井隔水管与井口技术研究进展[J].中国石油大学学报(自然科学版),2013,37(5):129-139.CHEN Guoming,LIU Xiuquan,CHANG Yuanjiang,et al.Advances in technology of deepwater drilling riser and wellhead[J].Journal of China University of Petroleum(Edition of Natural Science),2013,37(5):129-139.
参考文献 6
翟羽佳,汪志明,郭晓乐.深水钻井水力参数计算及优选方法[J].中国海上油气,2013,25(1):59-63,68.ZHAI Yujia,WANG Zhiming,GUO Xiaole.The method for calculation and optimization of deep water drilling hy-draulic parameters [J].China Offshore Oil and Gas,2013,25(1):59-63,68.
参考文献 7
PIGOTT R J S.Mud flow in drilling:drilling and production practice[M].New York:American Petroleum Institute,1941:91-103.
参考文献 8
WILLIAMS C E,BRUCE G H.Carrying capacity of drilling muds[J].Journal of Petroleum Technology,1951,3(4):111-120.
参考文献 9
汪海阁,刘希圣,李洪乾,等.水平井段钻井液携带岩屑的实验研究[J].石油学报,1995,16(4):125-132.WANG Haige,LIU Xisheng,LI Hongqian,et al.An experimental study of transport of drilling cutting in a horizontal well [J].Acta Petrolei Sinica,1995,16(4):125-132.
参考文献 10
宋洵成,管志川,陈绍维.斜井岩屑运移临界环空流速力学模型[J].中国石油大学学报(自然科学版),2009,33(1):53-56,63.SONG Xuncheng,GUAN Zhichuan,CHEN Shaowei.Mechanics model of critical annular velocity for cuttings transportation in deviated well[J].Journal of China University of Petroleum(Edition of Natural Science),2009,33(1):53-56,63.
参考文献 11
BIZANTI M S,ALKAFEEF S F.A simplified hole cleaning solution to deviated and horizontal wells[R].SPE 81412-MS,2003.
参考文献 12
MIRHAJ S A.Numerical modeling of cuttings transport with foam in vertical and inclined wells[D].Edmonton:University of Alberta,2007.
参考文献 13
郭晓乐,汪志明,龙芝辉.大位移钻井全井段岩屑动态运移规律[J].中国石油大学学报(自然科学版),2011,35(1):72-76.GUO Xiaole,WANG Zhiming,LONG Zhihui.Transient cuttings transport laws through all sections of extended reach well[J].Journal of China University of Petroleum(Edition of Natural Science),2011,35(1):72-76.
参考文献 14
DUNNAHOC T.Circulating the hole clean:illusion or reality[J].E & P,2010,84(2):58-60.
参考文献 15
HART,DANIEL R,GREGORY L,et al.Tool with multisize segmented ring seat:US20120227973 [ P].2016-04-05.
参考文献 16
MOHSEN A,HOUSTON,HERN G L,et al.Multi-cycle ball activated circulation tool with flow blocking capability:US20130299184 [P].2015-06-02.
参考文献 17
龙之辉.钻井环空净化方法探讨[J].重庆石油高等专科学校学报,1998(1):6-7.LONG Zhihui.Study on drilling annulus cleaning method[J].Journal of Chongqing Petroleum College,1998(1):6-7.
参考文献 18
SHAO B,YAN Y F,WANG X M,et al.Numerical investigation of a double-circulation system for cuttings transport in CBM well drilling using a CFD-DEM coupled model[J].Engineering Applications of Computational Fluid Mechanics,2020,14(1):38-52.
参考文献 19
杨勇,崔树清,王风锐,等.煤层气多分支水平井双管双循环井眼清洁技术[J].天然气工业,2017,37(1):112-118.YANG Yong,CUI Shuqing,WANG Fengrui,et al.Double casing & binary circulation hole cleaning technology for CBM multi-branch horizontal wells[J].Natural Gas Industry,2017,37(1):112-118.
参考文献 20
杨睿月,黄中伟,李根生,等.连续油管带筛管双重管柱岩屑运移模型研究[J].中国石油大学学报(自然科学版),2016,40(5):87-95.YANG Ruiyue,HUANG Zhongwei,LI Gensheng,et al.Slotted liner sheathing coiled tubing—a dual-pipe model for cuttings transport[J].Journal of China University of Petroleum(Edition of Natural Science),2016,40(5):87-95.
参考文献 21
张悦.分流短节:CN201810363794.6[P].2018-04-22.
参考文献 22
PENG Qi,FAN Honghai,ZHOU Haobo,et al.Drilling fluid density calculation model at high temperature high pressure[R].OTC 26620-MS,2016.
参考文献 23
高永海.深水油气钻探井筒多相流动与井控的研究 [D].北京:中国石油大学(北京),2007.GAO Yonghai.Study on multi-phase flow in wellbore and well control in deep water drilling [ D].Beijing:China University of Petroleum(Beijing),2007.
参考文献 24
高永海,孙宝江,王志远,等.深水钻探井筒温度场的计算与分析[J].中国石油大学学报(自然科学版),2008,32(2):58-62.GAO Yonghai,SUN Baojiang,WANG Zhiyuan,et al.Calculation and analysis of wellbore temperature field in deepwater drilling [J].Journal of China University of Petroleum(Edition of Natural Science),2008,32(2):58-62.
参考文献 25
孙宝江,公培斌,刘震,等.双通道钻杆反循环钻井方法在深水钻井中应用的可行性探讨[J].中国海上油气,2013,25(1):49-53.SUN Baojiang,GONG Peibin,LIU Zhen,et al.Feasibility study of the reverse circulation drilling method with dual concentric drill pipe in deep water[J].China Offshore Oil and Gas,2013,25(1):49-53.
参考文献 26
倪玲英.工程流体力学[M].东营:中国石油大学出版社,2012:198-205.
参考文献 27
董星亮,刘书杰,孙东征,等.海洋钻井手册[M].北京:石油工业出版社,2009:211-219.
参考文献 28
陈庭根,管志川.钻井工程理论与技术[M].东营:中国石油大学出版社,2000:124-142.
参考文献 29
WANG K,HU Y,WANG Z,et al.Multi-frequency characterization of particle-wall interactions in a solidliquid dispersion conveying pipe flow using a nonintrusive vibration detection method[J].Chemical Engineering Journal,2020,413:127526.
参考文献 30
朱海龙.深水钻井隔水管内携岩水力学及工艺研究 [D].青岛:中国石油大学(华东),2009.ZHU Hailong.Research on the system design and monitoring strategy for the device of subsea mudlift drilling in deepwater[D].Qingdao:China University of Petroleum(East China),2009.
参考文献 31
韩占忠,王敬,兰小平,等.FLUENT 流体工程仿真计算实例与应用[ M].北京:北京理工大学出版社,2013:32-45.
参考文献 32
祝效华,贾彦杰,童华.气体钻井防沉屑工具结构安全性分析[J].石油机械,2009,37(2):9-11,89.ZHU Xiaohua,JIA Yanjie,TONG Hua.Structural safety analysis of anti-chip tool for gas drilling[J].China Petroleum Machinery,2009,37(2):9-11,89.
目录contents

    摘要

    深水大尺寸井眼提高泵排量钻进时,易导致钻井液循环压耗增加、泵功率利用率低和井底压力增加等问题,提出一种通过在井筒变径处钻杆上安装分流短节,实现钻井液双循环的方法,基于钻井水力参数优化理论和数值模拟方法, 研究分流短节对井筒变径处环空钻井液返速、钻井水力参数和钻杆结构安全性的影响。 结果表明:安装分流短节后井筒变径段环空钻井液的返速有明显提升;当分流喷嘴直径为 14 mm 时携岩效果最好;增大泵排量后,与未安装分流短节的常规钻井方法相比,分流短节不仅能有效提升井筒变径段环空钻井液返速,还可以降低钻井泵大排量引起的循环压耗;合理的结构设计可确保钻杆钻进的安全性;所得结论可为深水大尺寸井眼高效、安全钻进提供参考。

    Abstract

    The application of large-size boreholein deepwater drilling can cause increase of circulating pressure loss of drilling fluid low utilization efficiency of pump power and increase of bottom hole pressure due to the increase of pump displacement. To mitigate this problem, a method using double drilling fluid circulation was proposed by installing a short shunt tube on the drill-pipe at where with large wellbore diameter. The effects of the short shunt circulation on the annular drilling fluid return rate, drilling hydraulic parameters and the structural safety of the drillpipe were investigated, based on drilling hydraulic parameter optimization theory and numerical simulation methods. The results show that the short shunt can significantly improve the return rate of drilling fluid in wellbore with variable cross-sections. When the diameter of the shunt nozzle is 14 mm, the cuttings carrying efficiency can be maximized using the double circulation. In comparison with the conventional method without installing the short shunt, the short shunt can not only increase the return rate of annular drilling fluid, but also reduce the circulating pressure loss caused by large pump discharges. Adopting a reasonable structure design of the shunt tube can ensure the safety of the drillpipein drilling.

  • 近年来,中国海上油气勘探开发已逐步迈向深水,深水钻井与陆地和浅水区相比,井眼尺寸大,钻井过程中,常通过增大泵排量提升井筒环空钻井液的携岩效果[1-3],但这会造成钻井液循环压耗增加、泵功效利用率低和井底压力增大等问题,成为制约深水钻井的一个难题[4-6]。国内外关于大斜度井、水平井的岩屑运移规律[7-13]及钻井液循环旁通阀工具的研发已有不少研究[14-17],但对于大尺寸井眼钻进过程中,如何解决井筒变径处环空钻井液返速突然降低及通过增大泵排量提高环空钻井液返速而引起的部分水力参数异常变化研究较少[18-21],特别对于深水大尺寸井眼钻进,还未见相关报道。笔者针对这一问题,提出在井筒变径处钻杆上安装分流短节进行钻井液双循环的方法,建立一套钻井液双循环水力参数计算模型,并模拟分析深水大尺寸井眼钻进时有无安装分流短节对井筒变径段环空钻井液返速及钻井水力参数的影响,以期通过钻井液双循环的方法解决深水大尺寸井眼钻进时井筒变径段环空钻井液返速突然降低及增大泵排量后引起循环压耗增大等问题,为深水大尺寸井眼钻进提供理论指导。

  • 1 钻井液双循环工作原理

  • 考虑到深水大尺寸井眼钻进增大泵排量后引起部分钻井水力参数异常变化,提出在井筒变径处的钻杆上安装分流短节。当钻井液通过分流短节时, 会分离出一部分钻井液进入井筒环空,以增大井筒变径处的环空岩屑返速,剩余部分的钻井液继续向下,经钻头喷嘴喷射上返至井筒环空,实现钻井液在井筒环空的双循环携岩。原理如图1所示。利用钻井液双循环技术可以使钻井液环空流速与在井筒纵向上根据井筒环空尺寸的变化有一个合理的分配, 从而实现提高环空岩屑在井筒变径处的上返速度, 降低钻井大排量下循环压耗和井底压力等水力参数的影响。

  • 2 钻井液双循环水力参数计算模型

  • 2.1 钻井液当量静态密度确定

  • 考虑深水钻井温度、压力对钻井液密度的影响, 钻井液当量静态密度[22]

  • ρ(ΔT,Δp)=ρi1+CpΔT1-CtΔp.
    (1)
  • 其中

  • Cp=a0-a1Δp+a2Δp2,Ct=b0+b1ΔT+b2ΔT2,a0=8.558×10-4,a1=1.617×10-8,a2=5.553×10-13,b0=3.646×10-6,b1=6.311×10-9,b2=2.203×10-11.

  • 式中,ρi 为钻井液初始密度,g/cm 3;C p 为弹性压缩系数;C t 为热膨胀系数;p 和 Δp 分别为压力和压力变化,MPa;T 和 ΔT 分别为温度和温度变化,℃。

  • 图1 钻井液双循环工作原理示意图

  • Fig.1 Schematic diagram of working principle of drilling fluid double circulation

  • 其中海水温度随着水深的变化[23-24]

  • Tsea =Ts,0H<50;Ts(200-H)+13.7(H-50)k1+1501+exph+k0k3,H0H<200;
    (2)
  • 式中,T sea 为海水温度,℃;T s 为海水表面温度,℃;H 为深度, m; k 0=130.1; k 1=3.94; k 2=37.1; k 3=402.7。

  • 自然地温随井深的变化关系为

  • Tei=Ts+GtH
    (3)
  • 式中,T ei 为对应深度下的地层温度,℃;G t 为地温梯度,℃/100m。

  • 中国南海某井,水深550m,井深2 292m,钻井液密度为1.15g/cm 3 ,海水表面温度为26℃,根据所建立的计算模型,可以计算出钻井液当量静态密度随井深的变化关系,如图2所示。

  • 图2 钻井液当量静态密度随井深的变化关系

  • Fig.2 Relationship between equivalent static density of drilling fluid and well depth

  • 2.2 钻井液双循环水力参数计算模型

  • 为确定钻井液双循环井筒内分流处流量、钻井液循环压耗和钻井泵功率利用率等钻井水力参数, 结合钻井流体力学理论[25-29],建立钻井液双循环水力参数计算模型。

  • (1)钻井液从井口流到钻杆分流短节处的压耗为

  • Δpi1=0.57503ρ0.8μm0.2L1Q1.8dp4.8
    (4)
  • 式中,p i1 为分流短节上部钻杆内压耗,MPa;μm 为钻井液塑性黏度,mPa·s;L 1 为分流短节安装深度, m;Q 为泵排量,L/s;d p 为钻杆内径,m。

  • (2)假设通过分流短节处分流量为Q 1,则分流短节下方钻杆内压耗为

  • Δpi2=0.57503ρ0.8μm0.2L2Q-Q11.8dp4.8
    (5)
  • 式中,p i2 为分流短节下部钻杆内压耗,MPa;L 2 为分流短节下部钻杆长度,m;Q 2 为假设的分流短节处分流流量,L/s。

  • (3)分流短节上方环空压耗为

  • Δpa1=0.57503ρ0.8μm0.2L1Q11.8dh1-dp3dh1+dp1.8.
    (6)
  • 式中,p a1 为分流短节上部环空压耗,MPa;d h1 为分流短节处井径,m。

  • (4)分流短节下方环空压耗为

  • Δpa2=0.57503ρ0.8μm0.2L2Q-Q11.8dh2-dp3dh2+dp1.8
    (7)
  • 式中,p a2 为分流短节下部环空压耗,MPa;d h2 为分流短节下部井径,m。

  • (5)分流短节处压降为

  • Δpd=0.00981ρL1+L2+pp-pz+Δpa2-Δpi1
    (8)
  • 式中,p d 为分流短节处压降,MPa;p p 为泵压,MPa; p z 为钻头喷射后钻头下方静压,MPa。

  • (6)分流短节处实际分流流量为

  • Qs=C2dne4Δpd0.0081ρ.
    (9)
  • 式中,Q s 为实际分流短节处分流流量,L/s;C 为喷嘴系数;d ne 为喷嘴当量直径,m。

  • (7)循环压耗为

  • Δp=Δpi1+Δpi2+Δpa1+Δpa2.
    (10)
  • 式中,p 为循环压耗,MPa。

  • (8)岩屑举升效率为

  • Ks=1-0.0707ds(2.5-ρ)2/3vaρ1/3μe1/3.
    (11)
  • 式中,K s 为岩屑举升效率;d s 为岩屑直径,m;v a 为钻井液环空返速,m/s;μe 为钻井液视黏度,mPa·s。

  • (9)钻井泵功率利用率为

  • η=pb+pdps
    (12)
  • 式中,η 为钻井泵功率利用率;p b 为钻头水功率, kW;p d 为分流喷嘴射流水功率,kW;p s 为钻井泵实际功率,kW。

  • 在确定钻井液通过分流短节处的流量时,首先假设某一流量进行试算,通过采用二分法不断地缩减试算,当计算出的分流量与假设的分流量误差小于0.1%时,即认为假设的分流量为分流短节处流体的实际分流量。图3为模型求解流程。

  • 图3 模型求解流程

  • Fig.3 Flow chart of model solution

  • 3 钻井液双循环模型建立

  • 3.1 物理模型及边界条件

  • 根据实钻深水某井的井眼轨迹资料、井筒参数及深水环境参数等进行实井建模,分析分流短节对全井携岩效果的改善作用及对部分钻井水力参数的影响。

  • 选取海上某井,水深550m,海水表面温度26℃,井身结构参数:隔水管直径762mm;表层套管 Φ609.6mm×214m;技术套管 Φ339.73mm×505m, 钻杆 Φ139.7mm×2 292m,钻井液密度为1.15g/cm 3,钻井液黏度为15mPa·s,泵排量为62L/s,分流短节位于井深764m,分流喷嘴直径分别为10、 12、14、16mm,分流入射角度为30°,岩屑颗粒粒径为8mm。双循环全井仿真模型及分流处模型如图4所示。分流短节在钻杆周向上均匀布置2个,分流入射角为流体入射方向与井眼轴线夹角。对整个模型采用四面体结构网格划分,网格单元平均尺寸为6.8mm,为了准确计算分流短节处钻井液流速及压力,本模型对钻杆上的分流短节处网格进行了细化加密[30-31]

  • 图4 双循环全井仿真模型及分流处模型

  • Fig.4 Whole well simulation of double circulation and shunt location model

  • 3.2 可靠性验证

  • 由于目前关于深水大尺寸井眼钻进钻井液双循环携岩试验较少,为了验证建立模型的准确性,将模型计算结果与文献[18]的数值模拟结果进行比较。基础数据为:分流喷嘴安装在井深800m处,套管内径为177.8mm,钻杆直径为88.9mm,钻井液密度为1.06g/cm 3,钻井液塑性黏度为1.0mPa·s,岩屑颗粒直径为2mm,总的入口流量为40L/s。结果表明本文中模型计算的岩屑上返速度为5.652 5m/s,文献[18]数值模拟结果为5.714m/s,两种模型的结果误差小于2%,说明所建立的计算模型具有可靠性。

  • 4 结果分析

  • 4.1 分流喷嘴直径对钻井液流速的影响

  • 分别模拟分流短节安装在井深764和1 055m处钻杆上时,流经不同直径的分流喷嘴后钻井液的流速分布,得到在井深764和1055m处钻井液最大瞬时分流速度分别为166.4和168.5m/s。图5为分流短节安装在井深764m处钻井液的流速分布, 可以看出在分流喷嘴处,分流出的钻井液流速最大, 越往环空上部钻井液流速不断减小,同时随着分流喷嘴直径的增大,经喷嘴喷流出的钻井液流速也不断增大,提取不同井深处井眼环空钻井液流速的平均值,得到不同直径喷嘴下钻井液流速随井深变化曲线,如图6所示。在分流处上部井筒环空钻井液的返速有了明显提升,但分流短节下部井筒环空钻井液返速相应降低,因为随着分流喷嘴直径的增大, 在分流短节处分流的流量也随之增大,使通过钻杆流向井筒底部的流量相应减少。

  • 4.2 分流喷嘴直径对水力参数的影响

  • 模拟不同分流喷嘴直径的分流短节对水力参数的影响,并与未安装分流短节的结果进行比较,结果如图7所示。由图7可知,未安装分流短节时,钻井液在井筒中的循环压耗远高于安装分流短节后的循环压耗,钻井泵功率利用率仅为22.6%,在表层段岩屑举升效率仅为56%,当钻杆上安装分流短节进行钻井液双循环后,循环压耗随着分流短节喷嘴直径的增大而降低,钻井泵功率利用率有了明显提升, 泵功率利用率最大时超过40%,岩屑举升效率也有显著提高。同时由图7可以看出,分流喷嘴直径为14mm时,循环压耗、泵功率利用率变化趋于平缓, 岩屑举升效率有了明显的降低,因此在后续模拟计算时,优选分流短节直径为14mm。

  • 4.3 排量对环空钻井液流速的影响

  • 保持其他参数不变,选取分流喷嘴直径为14mm的分流短节,模拟计算泵排量为62、84和124L/s情况下,经分流后处于分流短节上部与下部的环空钻井液的平均流速,如图8所示。由图8可知, 随着泵排量的增大,环空钻井液的平均流速也随之增大,同时可以看出随着泵排量增大,分流短节上部环空钻井液平均返速与下部环空钻井液平均返速的差值也增大。

  • 图5 流经不同直径喷嘴时钻井液流速分布

  • Fig.5 Flow velocity distribution of drilling fluid under nozzles with different diameters

  • 图6 经不同直径喷嘴分流后环空钻井液平均流速随井深的变化关系

  • Fig.6 Relationship between average flow velocity of annular drilling fluid and well depth after different diameter nozzles

  • 图7 不同分流喷嘴直径对部分水力参数的影响

  • Fig.7 Influence of different nozzle diameters on some hydraulic parameters

  • 图8 不同排量下经分流后环空钻井液平均流速随井深的变化关系

  • Fig.8 Relationship between average flow velocity of annular drilling fluid and well depth at different pump displacement after shunting

  • 4.4 不同排量下钻井液双循环对水力参数的影响

  • 模拟计算泵排量62L/s与双泵大排量124L/s下钻井液双循环时对水力参数的影响(表1),并与未安装分流短节的计算结果进行比较,由表1可知,深水钻井时在增大泵排量情况下进行钻井液双循环后对井筒循环压耗降低相比常规排量下循环压耗的降低幅度更大,对钻井泵功率利用率的提升,高于常规排量下未安装分流短节时的提升效果,同时岩屑的举升效率也有明显提高。

  • 表1 不同排量下分流短节对部分水力参数的影响

  • Table1 Influence of shunt on some hydraulic parameters at different discharge of pump

  • 5 分流孔对钻杆结构安全性的影响

  • 由图6可以看出,分流孔径越大,分流能力越强, 但其结构安全性也越低。为此利用CAE技术[32],选取分流孔径14mm、壁厚10.55mm、分流孔与钻杆轴线夹角30°、扭矩10kN·m、轴向载荷100~500kN (对应不同的轴向安装位置),安装分流短节后的钻杆计算力学模型如图9所示。钻杆工作应力随轴向载荷的变化如图10所示。由计算可知,在工作载荷范围内钻杆的安全系数大于2.5(E-75级钻杆最小屈服强度为517MPa),其结构安全性满足使用要求。

  • 图9 安装分流短节钻杆力学模型及应力云图

  • Fig.9 Mechanical model and stress nephogram of short shunt were installed on drill pipe

  • 图10 轴向载荷对钻杆最大应力的影响

  • Fig.10 Influence of axial load on the maximum stress of drill pipe

  • 6 结论

  • (1)针对深水大尺寸井眼钻进工况,在井筒变径处安装分流短节,可以实现钻井液双循环,且井筒变径段环空钻井液返速明显提升。

  • (2)常规钻井泵排量下,模拟了不同分流喷嘴直径对部分钻井水力参数的影响,优选了喷嘴直径。安装分流短节后钻杆安全性较高,作业过程中不仅可以有效降低钻井液循环压耗,还能提高岩屑举升效率和钻井泵功率利用率。

  • 参考文献

    • [1] 王宁,孙宝江,王志远,等.考虑钻头进尺影响的深水钻井水力参数优选[J].中国海上油气,2015,27(3):126-132.WANG Ning,SUN Baojiang,WANG Zhiyuan,et al.Optimization of hydraulic parameters for deep water drilling considering the effect of drilling footage [J].China Offshore Oil and Gas,2015,27(3):126-132.

    • [2] 何新霞,闫加亮,徐长航.海底钻井液举升钻井系统监测与控制[J].中国石油大学学报(自然科学版),2014,38(3):129-134.HE Xinxia,YAN Jialiang,XU Changhang.Monitoring and control for subsea mudlift drilling system[J].Journal of China University of Petroleum(Edition of Natural Science),2014,38(3):129-134.

    • [3] 杨宏伟,李军,柳贡慧,等.多梯度钻井动态控制参数优化设计[J].中国石油大学学报(自然科学版),2019,43(3):73-79.YANG Hongwei,LI Jun,LIU Gonghui,et al.Optimization design of dynamic control parameters for multi-gradient drilling[J].Journal of China University of Petroleum(Edition of Natural Science),2019,43(3):73-79.

    • [4] 杨进,曹式敬.深水石油钻井技术现状及发展趋势 [J].石油钻采工艺,2008,30(2):10-13.YANG Jin,CAO Shijing.Current situation and developing trend of petroleum drilling technologies in deepwater [J].Oil Drilling & Production Technology,2008,30(2):10-13.

    • [5] 陈国明,刘秀全,畅元江,等.深水钻井隔水管与井口技术研究进展[J].中国石油大学学报(自然科学版),2013,37(5):129-139.CHEN Guoming,LIU Xiuquan,CHANG Yuanjiang,et al.Advances in technology of deepwater drilling riser and wellhead[J].Journal of China University of Petroleum(Edition of Natural Science),2013,37(5):129-139.

    • [6] 翟羽佳,汪志明,郭晓乐.深水钻井水力参数计算及优选方法[J].中国海上油气,2013,25(1):59-63,68.ZHAI Yujia,WANG Zhiming,GUO Xiaole.The method for calculation and optimization of deep water drilling hy-draulic parameters [J].China Offshore Oil and Gas,2013,25(1):59-63,68.

    • [7] PIGOTT R J S.Mud flow in drilling:drilling and production practice[M].New York:American Petroleum Institute,1941:91-103.

    • [8] WILLIAMS C E,BRUCE G H.Carrying capacity of drilling muds[J].Journal of Petroleum Technology,1951,3(4):111-120.

    • [9] 汪海阁,刘希圣,李洪乾,等.水平井段钻井液携带岩屑的实验研究[J].石油学报,1995,16(4):125-132.WANG Haige,LIU Xisheng,LI Hongqian,et al.An experimental study of transport of drilling cutting in a horizontal well [J].Acta Petrolei Sinica,1995,16(4):125-132.

    • [10] 宋洵成,管志川,陈绍维.斜井岩屑运移临界环空流速力学模型[J].中国石油大学学报(自然科学版),2009,33(1):53-56,63.SONG Xuncheng,GUAN Zhichuan,CHEN Shaowei.Mechanics model of critical annular velocity for cuttings transportation in deviated well[J].Journal of China University of Petroleum(Edition of Natural Science),2009,33(1):53-56,63.

    • [11] BIZANTI M S,ALKAFEEF S F.A simplified hole cleaning solution to deviated and horizontal wells[R].SPE 81412-MS,2003.

    • [12] MIRHAJ S A.Numerical modeling of cuttings transport with foam in vertical and inclined wells[D].Edmonton:University of Alberta,2007.

    • [13] 郭晓乐,汪志明,龙芝辉.大位移钻井全井段岩屑动态运移规律[J].中国石油大学学报(自然科学版),2011,35(1):72-76.GUO Xiaole,WANG Zhiming,LONG Zhihui.Transient cuttings transport laws through all sections of extended reach well[J].Journal of China University of Petroleum(Edition of Natural Science),2011,35(1):72-76.

    • [14] DUNNAHOC T.Circulating the hole clean:illusion or reality[J].E & P,2010,84(2):58-60.

    • [15] HART,DANIEL R,GREGORY L,et al.Tool with multisize segmented ring seat:US20120227973 [ P].2016-04-05.

    • [16] MOHSEN A,HOUSTON,HERN G L,et al.Multi-cycle ball activated circulation tool with flow blocking capability:US20130299184 [P].2015-06-02.

    • [17] 龙之辉.钻井环空净化方法探讨[J].重庆石油高等专科学校学报,1998(1):6-7.LONG Zhihui.Study on drilling annulus cleaning method[J].Journal of Chongqing Petroleum College,1998(1):6-7.

    • [18] SHAO B,YAN Y F,WANG X M,et al.Numerical investigation of a double-circulation system for cuttings transport in CBM well drilling using a CFD-DEM coupled model[J].Engineering Applications of Computational Fluid Mechanics,2020,14(1):38-52.

    • [19] 杨勇,崔树清,王风锐,等.煤层气多分支水平井双管双循环井眼清洁技术[J].天然气工业,2017,37(1):112-118.YANG Yong,CUI Shuqing,WANG Fengrui,et al.Double casing & binary circulation hole cleaning technology for CBM multi-branch horizontal wells[J].Natural Gas Industry,2017,37(1):112-118.

    • [20] 杨睿月,黄中伟,李根生,等.连续油管带筛管双重管柱岩屑运移模型研究[J].中国石油大学学报(自然科学版),2016,40(5):87-95.YANG Ruiyue,HUANG Zhongwei,LI Gensheng,et al.Slotted liner sheathing coiled tubing—a dual-pipe model for cuttings transport[J].Journal of China University of Petroleum(Edition of Natural Science),2016,40(5):87-95.

    • [21] 张悦.分流短节:CN201810363794.6[P].2018-04-22.

    • [22] PENG Qi,FAN Honghai,ZHOU Haobo,et al.Drilling fluid density calculation model at high temperature high pressure[R].OTC 26620-MS,2016.

    • [23] 高永海.深水油气钻探井筒多相流动与井控的研究 [D].北京:中国石油大学(北京),2007.GAO Yonghai.Study on multi-phase flow in wellbore and well control in deep water drilling [ D].Beijing:China University of Petroleum(Beijing),2007.

    • [24] 高永海,孙宝江,王志远,等.深水钻探井筒温度场的计算与分析[J].中国石油大学学报(自然科学版),2008,32(2):58-62.GAO Yonghai,SUN Baojiang,WANG Zhiyuan,et al.Calculation and analysis of wellbore temperature field in deepwater drilling [J].Journal of China University of Petroleum(Edition of Natural Science),2008,32(2):58-62.

    • [25] 孙宝江,公培斌,刘震,等.双通道钻杆反循环钻井方法在深水钻井中应用的可行性探讨[J].中国海上油气,2013,25(1):49-53.SUN Baojiang,GONG Peibin,LIU Zhen,et al.Feasibility study of the reverse circulation drilling method with dual concentric drill pipe in deep water[J].China Offshore Oil and Gas,2013,25(1):49-53.

    • [26] 倪玲英.工程流体力学[M].东营:中国石油大学出版社,2012:198-205.

    • [27] 董星亮,刘书杰,孙东征,等.海洋钻井手册[M].北京:石油工业出版社,2009:211-219.

    • [28] 陈庭根,管志川.钻井工程理论与技术[M].东营:中国石油大学出版社,2000:124-142.

    • [29] WANG K,HU Y,WANG Z,et al.Multi-frequency characterization of particle-wall interactions in a solidliquid dispersion conveying pipe flow using a nonintrusive vibration detection method[J].Chemical Engineering Journal,2020,413:127526.

    • [30] 朱海龙.深水钻井隔水管内携岩水力学及工艺研究 [D].青岛:中国石油大学(华东),2009.ZHU Hailong.Research on the system design and monitoring strategy for the device of subsea mudlift drilling in deepwater[D].Qingdao:China University of Petroleum(East China),2009.

    • [31] 韩占忠,王敬,兰小平,等.FLUENT 流体工程仿真计算实例与应用[ M].北京:北京理工大学出版社,2013:32-45.

    • [32] 祝效华,贾彦杰,童华.气体钻井防沉屑工具结构安全性分析[J].石油机械,2009,37(2):9-11,89.ZHU Xiaohua,JIA Yanjie,TONG Hua.Structural safety analysis of anti-chip tool for gas drilling[J].China Petroleum Machinery,2009,37(2):9-11,89.

  • 参考文献

    • [1] 王宁,孙宝江,王志远,等.考虑钻头进尺影响的深水钻井水力参数优选[J].中国海上油气,2015,27(3):126-132.WANG Ning,SUN Baojiang,WANG Zhiyuan,et al.Optimization of hydraulic parameters for deep water drilling considering the effect of drilling footage [J].China Offshore Oil and Gas,2015,27(3):126-132.

    • [2] 何新霞,闫加亮,徐长航.海底钻井液举升钻井系统监测与控制[J].中国石油大学学报(自然科学版),2014,38(3):129-134.HE Xinxia,YAN Jialiang,XU Changhang.Monitoring and control for subsea mudlift drilling system[J].Journal of China University of Petroleum(Edition of Natural Science),2014,38(3):129-134.

    • [3] 杨宏伟,李军,柳贡慧,等.多梯度钻井动态控制参数优化设计[J].中国石油大学学报(自然科学版),2019,43(3):73-79.YANG Hongwei,LI Jun,LIU Gonghui,et al.Optimization design of dynamic control parameters for multi-gradient drilling[J].Journal of China University of Petroleum(Edition of Natural Science),2019,43(3):73-79.

    • [4] 杨进,曹式敬.深水石油钻井技术现状及发展趋势 [J].石油钻采工艺,2008,30(2):10-13.YANG Jin,CAO Shijing.Current situation and developing trend of petroleum drilling technologies in deepwater [J].Oil Drilling & Production Technology,2008,30(2):10-13.

    • [5] 陈国明,刘秀全,畅元江,等.深水钻井隔水管与井口技术研究进展[J].中国石油大学学报(自然科学版),2013,37(5):129-139.CHEN Guoming,LIU Xiuquan,CHANG Yuanjiang,et al.Advances in technology of deepwater drilling riser and wellhead[J].Journal of China University of Petroleum(Edition of Natural Science),2013,37(5):129-139.

    • [6] 翟羽佳,汪志明,郭晓乐.深水钻井水力参数计算及优选方法[J].中国海上油气,2013,25(1):59-63,68.ZHAI Yujia,WANG Zhiming,GUO Xiaole.The method for calculation and optimization of deep water drilling hy-draulic parameters [J].China Offshore Oil and Gas,2013,25(1):59-63,68.

    • [7] PIGOTT R J S.Mud flow in drilling:drilling and production practice[M].New York:American Petroleum Institute,1941:91-103.

    • [8] WILLIAMS C E,BRUCE G H.Carrying capacity of drilling muds[J].Journal of Petroleum Technology,1951,3(4):111-120.

    • [9] 汪海阁,刘希圣,李洪乾,等.水平井段钻井液携带岩屑的实验研究[J].石油学报,1995,16(4):125-132.WANG Haige,LIU Xisheng,LI Hongqian,et al.An experimental study of transport of drilling cutting in a horizontal well [J].Acta Petrolei Sinica,1995,16(4):125-132.

    • [10] 宋洵成,管志川,陈绍维.斜井岩屑运移临界环空流速力学模型[J].中国石油大学学报(自然科学版),2009,33(1):53-56,63.SONG Xuncheng,GUAN Zhichuan,CHEN Shaowei.Mechanics model of critical annular velocity for cuttings transportation in deviated well[J].Journal of China University of Petroleum(Edition of Natural Science),2009,33(1):53-56,63.

    • [11] BIZANTI M S,ALKAFEEF S F.A simplified hole cleaning solution to deviated and horizontal wells[R].SPE 81412-MS,2003.

    • [12] MIRHAJ S A.Numerical modeling of cuttings transport with foam in vertical and inclined wells[D].Edmonton:University of Alberta,2007.

    • [13] 郭晓乐,汪志明,龙芝辉.大位移钻井全井段岩屑动态运移规律[J].中国石油大学学报(自然科学版),2011,35(1):72-76.GUO Xiaole,WANG Zhiming,LONG Zhihui.Transient cuttings transport laws through all sections of extended reach well[J].Journal of China University of Petroleum(Edition of Natural Science),2011,35(1):72-76.

    • [14] DUNNAHOC T.Circulating the hole clean:illusion or reality[J].E & P,2010,84(2):58-60.

    • [15] HART,DANIEL R,GREGORY L,et al.Tool with multisize segmented ring seat:US20120227973 [ P].2016-04-05.

    • [16] MOHSEN A,HOUSTON,HERN G L,et al.Multi-cycle ball activated circulation tool with flow blocking capability:US20130299184 [P].2015-06-02.

    • [17] 龙之辉.钻井环空净化方法探讨[J].重庆石油高等专科学校学报,1998(1):6-7.LONG Zhihui.Study on drilling annulus cleaning method[J].Journal of Chongqing Petroleum College,1998(1):6-7.

    • [18] SHAO B,YAN Y F,WANG X M,et al.Numerical investigation of a double-circulation system for cuttings transport in CBM well drilling using a CFD-DEM coupled model[J].Engineering Applications of Computational Fluid Mechanics,2020,14(1):38-52.

    • [19] 杨勇,崔树清,王风锐,等.煤层气多分支水平井双管双循环井眼清洁技术[J].天然气工业,2017,37(1):112-118.YANG Yong,CUI Shuqing,WANG Fengrui,et al.Double casing & binary circulation hole cleaning technology for CBM multi-branch horizontal wells[J].Natural Gas Industry,2017,37(1):112-118.

    • [20] 杨睿月,黄中伟,李根生,等.连续油管带筛管双重管柱岩屑运移模型研究[J].中国石油大学学报(自然科学版),2016,40(5):87-95.YANG Ruiyue,HUANG Zhongwei,LI Gensheng,et al.Slotted liner sheathing coiled tubing—a dual-pipe model for cuttings transport[J].Journal of China University of Petroleum(Edition of Natural Science),2016,40(5):87-95.

    • [21] 张悦.分流短节:CN201810363794.6[P].2018-04-22.

    • [22] PENG Qi,FAN Honghai,ZHOU Haobo,et al.Drilling fluid density calculation model at high temperature high pressure[R].OTC 26620-MS,2016.

    • [23] 高永海.深水油气钻探井筒多相流动与井控的研究 [D].北京:中国石油大学(北京),2007.GAO Yonghai.Study on multi-phase flow in wellbore and well control in deep water drilling [ D].Beijing:China University of Petroleum(Beijing),2007.

    • [24] 高永海,孙宝江,王志远,等.深水钻探井筒温度场的计算与分析[J].中国石油大学学报(自然科学版),2008,32(2):58-62.GAO Yonghai,SUN Baojiang,WANG Zhiyuan,et al.Calculation and analysis of wellbore temperature field in deepwater drilling [J].Journal of China University of Petroleum(Edition of Natural Science),2008,32(2):58-62.

    • [25] 孙宝江,公培斌,刘震,等.双通道钻杆反循环钻井方法在深水钻井中应用的可行性探讨[J].中国海上油气,2013,25(1):49-53.SUN Baojiang,GONG Peibin,LIU Zhen,et al.Feasibility study of the reverse circulation drilling method with dual concentric drill pipe in deep water[J].China Offshore Oil and Gas,2013,25(1):49-53.

    • [26] 倪玲英.工程流体力学[M].东营:中国石油大学出版社,2012:198-205.

    • [27] 董星亮,刘书杰,孙东征,等.海洋钻井手册[M].北京:石油工业出版社,2009:211-219.

    • [28] 陈庭根,管志川.钻井工程理论与技术[M].东营:中国石油大学出版社,2000:124-142.

    • [29] WANG K,HU Y,WANG Z,et al.Multi-frequency characterization of particle-wall interactions in a solidliquid dispersion conveying pipe flow using a nonintrusive vibration detection method[J].Chemical Engineering Journal,2020,413:127526.

    • [30] 朱海龙.深水钻井隔水管内携岩水力学及工艺研究 [D].青岛:中国石油大学(华东),2009.ZHU Hailong.Research on the system design and monitoring strategy for the device of subsea mudlift drilling in deepwater[D].Qingdao:China University of Petroleum(East China),2009.

    • [31] 韩占忠,王敬,兰小平,等.FLUENT 流体工程仿真计算实例与应用[ M].北京:北京理工大学出版社,2013:32-45.

    • [32] 祝效华,贾彦杰,童华.气体钻井防沉屑工具结构安全性分析[J].石油机械,2009,37(2):9-11,89.ZHU Xiaohua,JIA Yanjie,TONG Hua.Structural safety analysis of anti-chip tool for gas drilling[J].China Petroleum Machinery,2009,37(2):9-11,89.

  • 版权所有 中国石油大学学报(自然科学版)编辑部 Copyright©2008 All Rights Reserved
    主管单位:中华人民共和国教育部 主办单位:中国石油大学(华东)
    地址: 青岛市黄岛区长江西路66号中国石油大学期刊社 邮编:266580 电话:0532-86983553 E-mail: journal@upc.edu.cn
    本系统由:北京勤云科技发展有限公司设计